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Abstract 

Horton, Kirk Gerritt. Fault Detection and Model Identification in Linear Dynamical 

Systems. (Under the direction of Dr. Stephen La Vern Campbell.) 

Linear dynamical systems, Ex' + Fx = f(t), in which E is singular, are useful in a 

wide variety of applications. Because of this wide spread applicability, much research 

has been done recently to develop theory for the design of linear dynamical systems. 

A key aspect of system design is fault detection and isolation (FDI). One avenue of 

FDI is via the multi-model approach, in which the parameters of the nominal, unfailed 

model of the system are known, as well as the parameters of one or more fault models. 

The design goal is to obtain an indicator for when a fault has occurred, and, when 

more than one type is possible, which type of fault it is. A choice that must be made 

in the system design is how to model noise. One way is as a bounded energy signal. 

This approach places very few restrictions on the types of noisy systems which can 

be addressed, requiring no complex modeling requirement. 

This thesis applies the multi-model approach to FDI in linear dynamical systems, 

modeling noise as bounded energy signals. A complete algorithm is developed, re- 

quiring very little on-line computation, with which nearly perfect fault detection and 

isolation over a finite horizon is attained. The algorithm applies techniques to convert 

complex system relationships into necessary and sufficient conditions for the solutions 

to optimal control problems. The first such problem provides the fault indicator via 



the minimum energy detection signal, while the second problem provides for fault 

isolation via the separating hyperplane. The algorithm is implemented and tested 

on a suite of examples in commercial optimization software. The algorithm is shown 

to have promise in nonlinear problems, time varying problems, and certain types of 

linear problems for which existing theory is not suitable. 
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Chapter 1 

Introduction and Review of Prior 

Research 

Models of dynamical systems that consist of a set of linear differential and algebraic 

equations (DAEs) 

Ez' + Fz = f(t) (1.1) 

in which the (square) matrix E is singular, are called linear descriptor systems. Many 

systems throughout a wide variety of applications are most easily described as linear 

descriptor systems. Variational problems subject to constraints, such as the equations 

of motion for a robotic arm, can often be written as descriptor systems. Network 

modeling problems, as in electrical circuit design, are another example. The list 

continues with model reduction problems, singular perturbations, and discretizations 

of partial differential equations, just to name a few. (See [5, 8] for an in-depth 

description of applications and examples.) Because of this wide spread applicability, 

much research has been done recently involving linear DAEs. 

A key aspect of system design in linear DAE modeled systems is fault detection 

and isolation (FDI). One avenue of FDI is via the multi-model approach, in which 

the parameters of the nominal, unfailed model of the system are known, as well as 
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the parameters of one or more fault models. The design goal is to obtain an indicator 

that tells the operator when a fault has occurred, and, when more than one type is 

possible, which type of fault it is. 

Another aspect of system design is the modeling of noise. One way to model 

noise is as a bounded energy signal. This approach places very few restrictions on the 

types of noisy systems which can be addressed. It also presents no complex modeling 

requirement, a very useful computational tool of which we can take full advantage. 

In this thesis we apply the multi-model approach to FDI in linear descriptor 

systems, modeling noise as bounded energy signals. The combination appears to 

be under-explored, in that very little research seems to exist that uses both the 

multi-model approach and bounded energy noise. We develop a complete algorithm, 

requiring very little on-line computation by an operator, with which nearly perfect 

fault detection and isolation over a finite horizon is attained. 

1.1    Linear Descriptor Systems 

We begin with a short introduction to descriptor systems, the basic theory and several 

numerical methods used to obtain solutions. 

1.1.1    Basic Theory 

As described above, DAEs occur in many applications. Models that consist of a set 

of ordinary differential equations (ODEs) often are first written as DAEs. A DAE 

is manipulated through differentiation and substitution to convert it to ODE form. 

Consider 

x'   =   ax + by (1.2a) 

y   =   cx + d (1.2b) 
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in which a, b, c, and d are scalar constants. Equation (1.2) consists of a differential 

equation (1.2a) and an algebraic constraint (1.2b). The Jacobian of (1.2) with respect 

to x', y' is 

r 1   0 

0   0 

which is singular. By differentiating (1.2b) we obtain the full system 

x'   —   ax + by (1.3a) 

y   =   cx + d (1.3b) 

y'   =   ex'. (1.3c) 

We can substitute (1.3b) into (1.3a) to obtain the ODE 

x'   =   (a + bc)x + bd (1.4a) 

y'   =   ex' (1.4b) 

the solution of which is easily obtained. 

Frequently, reasons exist for not attempting to manipulate a system like (1.2) into 

explicit (ODE) form. First, physical problems initially modeled as DAEs contain 

relationships between variables of interest. Changing to an explicit model may result 

in less meaningful variables, as well as a loss of the importance of the relationships 

between those variables. In addition, sparsity is usually lost. Numerical methods 

that rely on the sparsity of a DAE may not be suitable for solving the ODE that 

is obtained by differentiation and substitution. Finally, it may not be easy or even 

possible to convert a complex system into ODE form. When it is possible, it might be 

easier to solve the DAE directly than to do the mathematical manipulation necessary 

to convert it to an ODE. See [5] for a more detailed explanation as to why the DAE 

form of a model may be preferred over the ODE form. 
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It is due to these reasons, among others, that the base of research in DAEs has 

continuously grown over the last several years. At the heart of the theory are two key 

concepts, solvability and the uniform differentiation index [5]. 

DEFINITION 1.1. The system (1.1), where E and F are m x m matrices, is 

solvable on an interval if for every m-times differentiable f(t), there is at least one 

continuously differentiable solution to (1.1). In addition, solutions are defined on the 

entire interval and are uniquely determined by their value at any t in the interval. 

We will return to the necessary and sufficient conditions for solvability of certain 

types of DAEs a bit later. 

DEFINITION 1.2. The minimum number of times that all or part of (1.1) must 

be differentiated with respect to t in order to determine z' as a continuous function of 

z,t  is the index, v, of DAE (1.1). 

Example (1.2) is an index one DAE. Numerical methods are well developed for 

index one DAEs. Higher index problems are notoriously more difficult to solve via 

numerical methods. Fortunately, all of the DAEs we will deal with in this thesis are 

of index one. 

Of the several special structural forms for DAEs found in the literature, two will 

be of interest in this research: 

• Linear Time Invariant DAE 

Ez' + Fz = f(t) (1.5) 

• Linear Time Varying DAE 

E(t)z' + F(t)z = f(t) (1.6) 

We mention three other types for completeness: 

• Linear in the derivative, nonlinear DAE 

E(z)z' + F(z)z = f(t) (1.7) 
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• Semi-Explicit (nonlinear) DAE 

z'   =   f[z(t),u(t),t] 

0   =   g[z{t),u{t),t] 

• Fully Implicit (nonlinear) DAE 

F(z',z,t) = 0 

(1.8a) 

(1.8b) 

(1.9) 

The extension of our algorithm to these problems will be left to future research. 

The theory for (1.5) and (1.6) is fairly well understood. For (1.5), solvability is 

expressed in terms of a matrix pencil For square matrices E and F, and complex 

parameter A, XE + F is called a matrix pencil. If its determinant is not identically 

zero as a function of A, then the pencil XE + F is said to be regular. Equation (1.5) 

is solvable if and only if XE + F is a regular pencil [5]. If (1.5) is solvable we can let 

z — Qw and premultiply by P so that (1.5) becomes 

PEQw' + PFQw = Pf(t)=g{t) (1.10) 

where P, Q are nonsingular matrices such that 

I   0 
PEQ 

0   N 
PFQ 

C   0 

0    / 

AT is a nilpotent matrix the index of which is the same as the uniform differentiation 

index of DAE (1.5). The system is then decoupled, and can be written as 

w'l + Cwl = gl{t) (1.11a) 

Nw'2 + w2 = g2{t). (1.11b) 

Equation (1.11a) is an ODE for which a solution exists for any initial value of 7/;j and 

any continuous forcing function gi(t). The unique solution to (1.11b) is 

w2 = (ND + I)-1g2(t) = ^(-lyA^0 (0 
i=0 
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where v is the index, or degree of nilpotency of N, and D is the differentiation 

operator. Note that the initial values of w2 are completely determined. 

In the linear time-varying case, (1.6), a similar result holds. While the nature of 

the matrix pencil XE(t) + F(t) is no longer an indicator of solvability, the form of 

(1.11) is still important in linear time-varying DAEs. 

DEFINITION 1.3. The system (1.6) is in standard canonical form if it is in the 

form 

I      0 

0   N(t) 

C(t)   0 
z' + 

0      / 
* = /(*) (1.12) 

where N is strictly lower (or upper) triangular. 

If E(t), F(t) are real analytic, then (1.6) is solvable if and only if, after linear 

time-varying coordinate changes, it can be written as (1.12). The problem exists in 

the difficulty of finding those coordinate changes that allow us to write the DAE in 

standard canonical form. 

For the other three cases mentioned above, (1.7)-(1.9), the theory is much newer 

and also much less understood. For the purpose of this thesis, it is sufficient to note 

that the concepts presented above serve as a basis for the development of the theory 

for these cases. It should be noted that while this newer theory is beyond the scope of 

this thesis, the common starting point serves as a good indicator that the algorithm 

developed herein for linear time-invariant and linear time-varying DAEs may have 

applications in the more general case as well. 

While there are many more interesting and useful items in the theory of DAEs, 

these few properties and definitions that we have mentioned will suffice for our pur- 

poses. For a complete treatment of DAEs see [5, 7, 8, 9, 10, 13, 14]. 
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1.1.2    Numerical Solutions 

While it is not our goal to present an exhaustive overview of the numerical meth- 

ods that can be used to solve descriptor systems, we briefly mention those methods 

which will be used in later chapters. The discretization methods we will review are 

those that are used by the commercial software in which we implement the FDI al- 

gorithm developed in this thesis, namely the trapezoidal method, the Compressed 

Hermite-Simpson method, and the 4-stage implicit Runge-Kutta method. These di- 

rect transcription discretizations will be described using the semi-explicit DAE form 

(1.8). After discretization, several methods exist for solving the resulting finite di- 

mensional problem. Of those methods, only the sparse quadratic program (SQP) will 

be described here. While the software, Boeing's Sparse Optimal Control Software 

(SOCS), which will be introduced in a later chapter, can solve DAEs via an ana- 

lytic transformation, as well as Euler's and linear multistep methods, these schemes 

will not be used in this thesis, and thus will not be mentioned here. Many of the 

approaches applied to DAEs are described in detail in [5, 13]. 

For our discussion of discretization and finite dimensional problem solution, con- 

sider a simple optimization problem based on the semi-explicit DAE (1.8) 

min  J\x(t),u(t),t] (1.13a) 
t0<t<tf 

subject to 

x'   =   f[x(t),u(t),t] (1.13b) 

0   =   g[x(t),u(t),t}. (1.13c) 
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Discretization 

In general, transcription discretization schemes start by dividing the time interval, 

[to,tf], into n segments 

t0 <h <t2< ... <tn = tf 

where the points tk, k = 0, ...n, are referred to as mesh points. Let xk — x(tk) be 

the value of a state variable at a mesh point. Likewise, denote the value of a control 

at a mesh point as uk = u(tk). Let fk = f(xk,uk,tk) and gk = g(xk,uk,tk) be the 

right-hand sides of (1.13b) and (1.13c), respectively. Finally, let hk = tk-tk-i be the 

step size for k = 1,..., n. 

Utilizing this notation, the trapezoidal method approximates the state equations 

(1.13b) and algebraic constraints (1.13c) as 

xk   =   Zik-x + ^Ufc + A-i) (1.14a) 

0   =   gk. (1.14b) 

In the Compressed Hermite-Simpson scheme we denote the value of the control at 

the midpoint of a segment as uk = u(tk) where tk = \(tk + tk-i), for k = 1, ...,n. The 

discrete approximations for this method are given by 

xk   =   xk-l + ^-(fk + 4fk + fk-i) (1.15a) 

0   =   gk (1.15b) 

where 

Ik = f&k,ü,tk) 

with 

%k = ^(xk-i + xk) + -g-(/fc-i - /*) 
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for k = 1, ...,n. The 4-stage implicit Runge-Kutta discretization uses four intermedi- 

ate, implicit steps 

c\ = hkf{xk-uuk-i,tk-i) (1.16a) 

C2 = hkf(xk-i + -^,ük,tk) (1.16b) 

C3 = hkf(xk^i + —,ük,tk) (1.16c) 

C4 = hkf(xk-i+C3,uk,tk). (1.16d) 

The discrete approximations for this method then become 

xk   =   a;^_i +-(ci+ 2c2 + 2c3+ c4) (1.17a) 
6 

0   =   gk (1.17b) 

where uk is defined as before. 

These methods have all been proven to converge for index one DAEs, and are 

thus appropriate for our purpose [4, 5]. In every case, the result of the discretization, 

when combined with the cost function, J, is a sparse nonlinear programming (NLP) 

problem. The variables of the problem are the discretized states, xk) controls, uk, and 

time, tk, for k = 0, ...n. 

Solving the Finite Dimensional Problem 

One way to solve this NLP problem, and the approach used by SOCS, is via a SQP 

approach [3]. Dropping subscripts for now, let w be the vector of state and control 

variables, (x, u), and let F(w, t) be the constraint set resulting from the discretization 

of the DAE. That is, (1.14), (1.15), or (1.17), after shifting everything to the right 

hand side, becomes 

0 = F(w,t). 
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Note that F is a function of the state, control, and time variables at all time steps. 

The SQP algorithm requires an initial guess, w°, and forms a new iterate by adding 

a scalar multiple, a, of the search direction, p. That is, 

w1 = w° + ap. 

The search direction is found by solving a quadratic programming (QP) subproblem 

defined at the current point. The QP subproblem is defined as 

min JIP + -pTHp 

subject to 

0 = Gp 

where Jw is the gradient vector of the cost function, H is an approximation to the 

Hessian matrix of the Lagrangian of the NLP (L = J - XTF), and G is the Jacobian 

matrix of gradients of the constraints F. The step length, a, is computed such that 

H remains positive definite. The QP subproblem can be solved via either a sparse 

Schur-Complement method, when appropriate, or a null-space quadratic program- 

ming algorithm when G and/or H are dense. Details about the latter can be found 

in [3]. 

An algorithm based on the combination of a direct transcription scheme and the 

SQP approach begins with a discretization and an initial guess. The SQP problem is 

then solved via the QP subproblem iteration. After each QP subproblem is solved, 

the current point is updated and the procedure is repeated. The subproblem itera- 

tion terminates when a point is reached which satisfies necessary conditions for a local 

minimum within a given set of tolerances. The solution is then compared to that of 

the previous discretization iteration, or the initial guess if it is the first iterate. The 

mesh is refined, the problem re-discretized and the process is repeated until succes- 

sive iterates agree within an additional given set of tolerances. The QP subproblem 
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demonstrates quadratic convergence under the right, conditions [3]. Convergence rates 

for the direct transcription schemes, when applied to index one descriptor systems, 

are at least quadratic, and, under the right system coefficient conditions, often are 

considerably better [5]. 

1.2    Fault Detection and Isolation 

With this basic understanding of the theory of descriptor systems and numerical 

methods for their treatment, we now turn our attention to the various approaches for 

treating faults in those systems. We begin with basic control theory, and then turn 

to feedback, the link between control theory and FDI. Following that is a discussion 

of the elements of optimal control and H^ control pertinent to our approach. We 

conclude with a discussion of existing research into FDI in descriptor systems and 

the methods used. 

1.2.1    Basic Theory 

A descriptor system is one possible result of a system design problem. The problem 

begins with a task to be accomplished, and the design engineer is usually given goals 

or objectives that describe the desired performance characteristics of the system along 

with a set of constraints by which the system is bound. The development of a system 

which accomplishes the objectives while meeting the constraints is the system design 

problem. 

A particular type of system design problem is the control problem, in which the 

goal is to generate certain outputs from the system or to maintain the state of the 

system within certain bounds. For example, an engineer might be asked to design 

a satellite attitude control system which does not consume too much fuel [1].   The 
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essential elements of such a control problem are 

• a mathematical model of the system, 

• a desired output, 

• a set of admissible controls, 

• a performance measure. 

Often, as stated above, a descriptor system is the natural product of the system 

design problem. For the remainder of this thesis, we will restrict most of our study 

to linear time-invariant systems (1.5). Comments extending our algorithm to linear 

time-varying systems (1.6) are included in a later chapter. 

Consider a system based on the linear time invariant DAE (1.5) 

x'   =   Ax + Bu (1.18a) 

y   =   Cx (1.18b) 

where x, y, and u are the state, output, and control vectors, respectively, and the time 

interval considered is t £ [t0,tf]. Systems often allow for noise or unknown inputs by 

adding a term to each equation of (1.18) 

x'   =   Ax + Bu + M^ (1.19a) 

y   =   Cx + Nfi (1.19b) 

where \i is the noise or unknown input, and the matrices M and N are the weight 

matrices for the state and output noise, respectively. 

Central to the study of system (1.18) are the concepts of controllability, observ- 

ability, and stability [6]. 

DEFINITION 1.4. A linear system is said to be controllable at t0 if it is possible to 

find some input function u(t), defined over t <E [*o,*/]; which will transfer the initial 

state x(t0) to the origin at some finite time tx G [t0,tf], h > t0. If this is true for all 

initial times t0 and all initial states x(t0), the system is completely controllable. 
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DEFINITION 1.5. A linear system is said to be observable at t0 if x(tQ) can, be 

determined from the output function y[t0,ti] for t0 £ [to,tf] and t0 < ty, where t\ 

is some finite time, t\ G [t0, t/]- // this is true for all t0 and x(t0), the system, is 

completely observable. 

Since controllability describes the ability of the control to affect the system state, 

it involves the matrices A and B. Likewise, since observability describes the ability of 

the output to characterize the state, it involves the matrices A and C. Simply stated, 

the nth-order system (1.18) is controllable if and only if [si - A \ B] has rank n for 

all values of s. The same system is observable if and only if [si — AT \ CT] has rank 

n for all values of s. Proofs of these characteristics can be found in [6], along with 

the requirements for controllability and observability in more complex systems. 

The concept of stability helps us deal with systems that may not be controllable 

and/or observable. Stability is closely related to the eigenvalues of the A matrix. 

Intuitively, a solution to (1.18) is stable if we can stay close to the solution by start- 

ing close enough to it via the initial condition. A solution is asymptotically stable if, 

by starting close enough, we converge to the solution. A system is stabilizable if all 

unstable modes are controllable, and detectable if all unstable modes are observable. 

Thus the system can be handled effectively provided all uncontrollable and unobserv- 

able modes are stable. This situation can often be tolerated in a control system [6]. 

For the remainder of this thesis, we will assume that we are dealing only with the 

controllable and/or observable modes of control systems. 

1.2.2    Feedback and Observer Design 

The bridge between basic control theory and fault detection is the concept of feedback. 

In a feedback control system, the control, u(t), is modified by information about the 

system. Sensors measure either the system state, or the output, and then pass that 
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information to the controller, which adjusts the control based on the input from 

the sensors. One of the fundamental goals of feedback compensator design is to 

improve the performance of the system through eigenvalue placement. As stated 

earlier, stability depends on the eigenvalues of the A matrix. By assigning desirable 

values to eigenvalues, system stability can be enhanced. For the state feedback case, 

the relation 

u{t) = Fv(t) - Kx{t) (1.20) 

is used, where the matrix K is called the feedback gain matrix, and F the feed-forward 

matrix. Substituting into (1.18), we obtain 

x1   =   (A-BK)x + BFv (1.21a) 

y   =   Cx. (1.21b) 

Clearly, the eigenvalues of the A - BK matrix now determine the stability of the 

system. By careful construction of the feedback gain matrix K, the eigenvalues are 

assigned the desired values. For the output feedback case, the relation 

u(t) = Fv(t) - Ky(t) (1.22) 

is used, where the K and F matrices are as defined above. Substituting this relation 

into (1.18), we obtain 

x' = (A-BKC)x + BFv. (1.23) 

Now the eigenvalues of the A - BKC matrix determine the stability of the system. 

Unfortunately, due to the presence of the C matrix in this expression, output feedback 

usually cannot place all of the eigenvalues of the system. This limitation is present 

when the rank of KC is less than the rank of K, i.e., when C is a long matrix. It 

should be noted that state feedback may impact the observability of a system, but can 
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have no impact on controllability. Output feedback can impact neither controllability 

nor observability of a system [6]. 

Using feedback, the basic tool for many FDI approaches can be constructed: the 

observer. For most systems the only information about the system state is through 

the output vector, which often provides only partial information. Thus, output feed- 

back is the only option, and not all system eigenvalues can be placed where desired. 

To improve system stability in these cases, the most frequently used method is to 

reconstruct information about the remaining elements of the state vector through 

development of an observer of the system. Consider the observer 

x' = Ax + Bu + L{y - Cx) (1.24) 

where x is the observer estimate for the state vector. Note that y is the output from 

the real system, (1.21), and Cx is the observer output. Subtracting (1.18a), and 

letting e = x — x be the observer error, we obtain 

e' = {A- LC)e. 

Since L is arbitrary and (A, C) is observable, we can guarantee that observer error 

goes to zero by selecting L so that A - LC is stable. With this construction, state 

feedback is possible using the observer estimate for the state vector. Thus all system 

eigenvalues can be placed where desired, and complete control over system stability is 

possible. It should be noted that since the complete state vector is reconstructed by 

the observer, faults which send the system into unpredicted or undesirable states may 

be detectable by such an observer simply by comparing the observer estimate with 

those elements of the system state vector which are available. This fault detection 

can be accomplished without using the observer to affect any feedback compensator 

for the system. 
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1.2.3    Optimal Control 

Later, when we develop our algorithm, we will work with a control system which acts 

as the constraints in an optimization problem. This optimal control structure is key to 

the multi-model approach to FDI, which we will discuss in Section 1.2.5. Accordingly, 

we briefly review optimal control theory. While this area of study is vast, the only 

topic which we will need for our discussion is the state regulator problem, also called 

the linear quadratic regulator (LQR) problem. Consider the optimization problem 

1   /"*/ 

'to 

subject to 

1 1   ftf 

J(x, u) = min   -x(tf)
TSfx(tf) + -        xTQx + uTRu dt (1.25a) 

2 2 Jt 

x' = Ax + Bu (1.25b) 

as well as some initial conditions at the beginning of the interval, where £/, Q, and 

R are the weight matrices for the terminal cost, the trajectory, and the control. It is 

assumed that Q is positive semi-definite and R is positive definite. This is one form 

of the LQR problem and it is important for three reasons. First, the theory is elegant 

and robust. Results are easy to understand and implement in numerical algorithms. 

Second, it has strong geometry. J(x, u) is actually an inner product norm with useful 

properties. Finally, there are strong physical correlations to this type of problem. 

Energy is a quadratic form, as is power. 

As with any optimization problem, the LQR problem possesses necessary condi- 

tions for a minimum. For the problem (1.25), we construct the Hamiltonian 

H{x,X,u) = hxTQx + uTRu) + XT{Ax + Bu) (1.26) 

where A is the Lagrange multiplier for the constraints. The Euler equations, which 



Chapter 1.   Introduction and Review of Prior Research 17 

must be satisfied by any extremum of the problem, are 

(1.27a) 

(1.27b) 

(1.27c) 

HI =   x' 

Hi =   A' 

HI =   0. 

When applied to (1.26), we obtain 

A'   =   -Qx-AT\ (1.28a) 

Ax + Bu (1.28b) x' 

0   =   Ru + BT\. (1.28c) 

Using (1.28c) and our assumption that R > 0, we can eliminate u from (1.28) to 

obtain a set of differential equations in x and A 

x'   =   Ax-BR-lBTX (1.29a) 

A'   =   -Qx-AT\. (1.29b) 

While this form will be useful in our algorithm, it is possible to take an additional step 

and eliminate A, resulting in a matrix Riccati differential equation for the optimal 

control feedback gain matrix. The derivation of the Riccati equation will be detailed 

when we develop our algorithm in the next chapter. It should be noted that our 

assumptions on the Q and R matrix, while not restrictive in an applicability sense, 

guarantee that the extremum which satisfies the necessary conditions represents at 

least a local minimum of the cost J(x,u). In fact, Q is often positive definite, and 

in that case, the conditions for an extremum are necessary and sufficient. Detailed 

discussions of this and other topics in optimal control can be found in [1, 6, 38]. 
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1.2.4    #oo Control 

.ffoo control in the time domain is similar to optimal control. It takes advantage of 

the linear quadratic (LQ) form in addressing significant uncertainties in the energies 

of system noises. For bounded energy noise inputs, where little or no other knowledge 

is available about the signal, the LQR formulation is an elegant worst-case approach. 

The model generally takes the form of (1.19), and all functions are assumed to exist in 

the space of square integrable functions, denoted L2. While H^ performance criteria 

vary, they all share the structure of the optimal control cost function, that is, they 

are all in LQ form. 

In this setting, filtering, smoothing, and compensator design are efficiently ac- 

complished. Nagpal and Khargonekar [27] apply a filtering and smoothing method 

using an H^ performance criterion on both the finite and half-infinite intervals to 

accomplish state estimation (filtering) and output smoothing. Tadmor [36] attempts 

to find, in LQ game-theoretic terms, the compensator which provides the best control 

in response to the worst disturbance. Matrix Riccati equations provide solutions in 

each case. 

While the structure of our problem is very similar to the H^ problem, several 

key differences will become apparent. First, we will solve a different problem. While 

Tadmor [36] designs a worst-case compensator, and Nagpal and Khargonekar [27] 

solve for the optimal filter and smoother in the face of various initial conditions, we 

will solve for the optimal fault detection signal. In addition, while both [27] and 

[36] work in single model systems, we will work in a multi-model system. Finally, 

while the noise present in our system is also L2, it is not the same kind of signal as 

is commonly assumed in H^ control. The impact of these differences will become 

significant as our problem is defined and our algorithm developed. 
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1.2.5    Prior Research 

In addition to the two approaches mentioned above, fault detection and isolation in 

linear control systems has been attempted from many angles. To begin, we note that 

there exist two basic types of approaches to FDI: passive and active. In the passive 

approach, only monitoring of system performance is allowed. No interaction with the 

system occurs, either for material or security reasons. The system states (or outputs) 

are measured and compared to "normal" system behavior, generating a residual. The 

residual is computed such that it is equal or close to zero when no faults are present, 

and much different from zero when a fault occurs. The vast majority of research in 

FDI using the passive approach applies observers to generate residuals. 

Passive Methods 

Nuninger et al. [32] use analytic redundancy in order to detect sensor and actuator 

failures or process disturbances. Analytic redundancy attempts to generate a residual 

that might contain information about the faults. Two methods for generating the 

residual are examined. First, direct residual generation is based on the parity space 

approach, using the input-output transfer function (the parity equation). Second, 

indirect residual generation is based on output estimation, using an observer to do 

state estimation first. The authors apply the first method to known input systems 

and the second method to both known and unknown input systems. A drawback of 

this approach is that some faults may have no influence on the residuals generated by 

either method, so perfect FDI is not attained. Chen and Speyer [15] also use analytic 

redundancy, generating a residual via an observer that reconstructs the system state 

vector. Their model has the target fault direction explicitly in the detection filter 

gain calculations, allowing for enhanced sensitivity of the filter to the target fault. 
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Koenig et al. [24] present a comparative study of several design methods for un- 

known input observers (UIO) used for FDI and Correction. Their goal is to design 

an integrated approach which can detect, isolate, and correct a large variety of faults 

for a desired system with real-time computation constraints. Methods compared are: 

failure isolation by using banks of observers (robust to some faults, but sensitive to 

others, in combination so that all faults are detectable), failure isolation by observer 

pole placement (to create an unknown input fault detection observer), and failure 

correction via general structured UIO (design of full order observer to estimate states 

as well as unknown inputs). Chung and Speyer [17] develop a game theoretic detec- 

tion filter, which is similar to the UIO, that attenuates disturbances, bounding all 

signals except the fault to be detected, embedding the exogenous signals into an un- 

observable, invariant subspace. The subspace structure is used to reduce the order of 

the limiting filter by factoring the invariant subspace out of the state space, resulting 

in a lower order filter sensitive only to the fault to be detected. The filter is applied 

to the flight control characteristics of the F-16XL and a simple rocket. 

The parity relation approach to residual genertion is applied by Youssouf and 

Kinnaert [40]. The method is based on the inverse of the map from both unknown 

inputs and faults to the observable signals (measured inputs and outputs), using a 

variable change in the frequency domain. Tools available for nonsingular systems can 

be used on the resulting map. The authors contend that FDI for singular systems 

depended previously on state estimation, which put unnecessary requirements on 

the plant, as there is no need to reconstruct the entire state vector to do residual 

generation. Where Youssouf and Kinnaert [40] apply their method to continuous time 

systems, Sauter et al. [35] do the same for the discrete case in mechanical systems, 

though the theory and algorithm are completely different. They do state equation 

decoupling before residual generation, which is contrary to customary methods. The 

decoupling involves separating out the unknown input from the system state instead 
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of from the residual. 

Chowdhury and Aravena [16] go in a slightly different direction. They apply a 

modular methodology to the area of fast fault detection and classification in dynamical 

electrical power systems. Module I is the generation of fault indicators in one of two 

ways: 

1. model-based, in which a residual is generated using either an accurate mathe- 

matical or I/O model of the nominal system, or an I/O model is built on-line, 

which is very difficult, 

2. model-free, in which detectable variables are measured and enhanced if neces- 

sary by signal-processing techniques. 

The authors present a model-free orthogonal decomposition based on multirate filter 

banks to produce a fault indicator. Module II is the measuring and testing of fault in- 

dicators via either statistical test or feedforward neural-network testing. The authors 

explore the neural network aspect. Fault classification occurs in module III, another 

neural network, the operation of which depends on the existence of a system model. 

The emphasis is on model-free methods, those lesser explored and lesser restrictive 

cases where models are not available, non-linearities prevent model derivation, or too 

many uncertainties exist in the system. These cases appear to hold the most promise 

for neural-network applications in fault detection. 

Hybrid Passive-Active Methods 

Some research has been done using a hybrid of the passive/active approaches. The 

passive approach is used to detect faults, then an active approach is used to cor- 

rect or compensate for faults through feedback. Zhang and Jiang [43] investigate 

the application of integrated fault detection, diagnosis, and reconfigurable control 
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to discrete-time stochastic vertical take-off and landing aircraft systems. A bank of 

two-stage adaptive Kaiman filters is used for FDI, and statistical decisions are made 

for fault detection, diagnosis and activation of controller reconfiguration. In a related 

paper [42], the same authors apply an interacting multiple-model based approach to 

the same type of control problem. A finite-state Markov chain is linked to the same 

Kaiman filter bank for fault diagnosis. The decision from this process is used to 

activate system reconfiguration via eigenstructure assignment. 

Active Methods 

The drawback inherent in the passive approach is that faults can be masked by the 

application of the control. Thus it is possible that a fault could go undiscovered until 

it is too late to correct it. In direct contrast, the active approach interacts with the 

system on a periodic basis, or at critical times, to detect faults, thus eliminating the 

possibility of the presence of undetected faults. The approach uses various types of 

interaction with the system to detect faults. A test signal, which is constructed in 

such a way that faults are highlighted, is fed into the system. Observation and/or 

manipulation of the resulting output is used to make a decision about system faults. 

Observers designed to aid in feedback, as well as various other types of feedback 

compensators, are examples of the active approach. 

Bennett et al. [2] apply speed dependent feedback (a stable time-varying linear 

observer) to detect intermittent, short duration faults in bilinear dynamical systems. 

The AC drive system for an electric train is considered. These systems experience 

abrupt disconnections which introduce severe transient errors and which are hard to 

detect due to their short durations. The parity equation approach is not preferred in 

this case due to the intermittent nature of the faults. By combining the observer and 

Kirchoff's law, a bank of observers is constructed to detect and correct disconnections. 
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This case is an example of the application of a test signal as part of the feedback to 

control the system and correct faults. 

The multi-model approach is well-suited to the case where it is desirable to apply 

a test signal independent of feedback control. The approach relies on the presence of 

the system model 

x'i   =   AiXi + Btv + Mifii (1.30a) 

y   =   dxi + Nifii (1.30b) 

for i = 0, ...,m, where m is the number of faults expected from the system, and 

v is the test signal. A different system model exists, with known parameters, for 

each possible fault. It is assumed that any feedback control has been absorbed into 

the Ai matrix, thus eliminating the control u from the differential equation. The 

difficulties in this approach lie in determining from which model an output y derives, 

as well as the computation of system parameters for each fault model. Nikoukhah 

[28] presents the use of a test signal for active FDI in discrete-time linear systems 

subject to inequality-bounded perturbations. Detectability is required, but when 

present, guaranteed FDI is attained. The discrete time case lends itself to recursive 

algorithms, and so recursion is used extensively by the author to develop the test 

signal. After constructing a test signal that separates outputs into disjoint convex 

sets, the author uses the separating hyperplane approach to determine which set a 

certain output falls into, and thus whether a fault has occurred. Linear programming 

is used to construct the separating hyperplane. Nikoukhah et al. [29] has the same 

goal as [28], but goes about it completely differently. Among the differences, fault 

isolation is accomplished by a ratio test, and optimal control theory is applied. This 

paper is the inspiration for our current research, and thus uses some of the same 

techniques we use, but applies them to discrete time control problems. We apply 

our methodology to continuous time control problems, which present key theoretic 
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and algorithmic differences. In addition, both [28] and [29] consider only two model 

systems, whereas our approach can handle problems with three or more models. 

The multi-model approach is also useful with Kaiman filtering. Keller et al. [21] 

presents the multi-model approach for fault detection in stochastic systems with un- 

known inputs. The method uses the two-stage Kaiman filter with unknown inputs 

and constant biases, the first stage of which is bias-free (for fault detection) and the 

second stage is a bias filter (for fault isolation). The optimum state estimate is ex- 

pressed as the output of the bias-free filter corrected with the output of the bias filter. 

Different fault types are detected using a bank of such filters. The two stages of the 

filter reduce computational time associated with the presence of multiple faults. 

1.2.6     Conclusion 

As mentioned in the introduction to this chapter, the combination of the multi- 

model approach and the bounded energy noise model seems to be under-explored. 

The common thread running through most of the applications mentioned in the last 

section is the modeling of noise. [16, 21, 22, 23, 33, 37, 41, 42, 43] model noise as 

some type of random variable. Many use filtering or statistical tests to make the fault 

decision, and thus do not model noise at all. Only [17, 27, 28, 29, 36] model noise 

as bounded energy signals. As we shall see, the bounded energy noise model is very 

suited to the multi-model approach, and the combination as developed in this thesis 

provides a powerful tool for fault detection and isolation in descriptor systems. 

1.3    Outline of Thesis 

In the next chapter, we present the theory and algorithm for the fault detection 

phase of the problem, along with extensions of the method to variations of the basic 
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problem. Following that, Chapter 3 is the development of the algorithm for the 

model identification phase. In Chapter 4, we state the full algorithm, then present 

and analyze several examples. Lastly, Chapter 5 is the conclusion and outline of future 

research possibilities in this area. Software codes for the algorithm are in Appendix 

A. 

1.4    Contributions of Thesis 

The research in this thesis will appear, or has already appeared in the following 

publications: 

• S. L. Campbell, K. Horton, R. Nikoukhah, and F. Delebecque, Rapid 

Model Selection and the Separability Index, in Proc. 4th IFAC Sympo- 

sium on Fault Detection, Supervision and Safety for Technical Processes 

(SAFEPROCESS 2000), Budapest, Hungary, June 2000, pp. 1187-1192. 

• R. Nikoukhah, F. Delebecque, S. L. Campbell, and K. Horton, Multi- 

model Identification and the Separability Index, in Proc. 14th Interna- 

tional Symposium of the Mathematical Theory of Networks and Systems 

2000, Perpignan, France, June 2000, CDROM. 

• R. Nikoukhah, S. L. Campbell, Kirk Horton, and F. Delebecque, Auxiliary 

signal design for robust multi-model identification, IEEE Transactions on 

Automatic Control, accepted subject to final revision. 

• S. L. Campbell, Kirk Horton, R. Nikoukhah, and F. Delebecque, Auxil- 

iary signal design for rapid multi-model identification rising optimization, 

submitted to Automatica. 



Chapter 2 

Fault Detection via the Detection Signal 

2.1    The Problem - Finding the Minimum Energy 

Detection Signal 

As introduced in the previous chapter, our goal is to attain near-perfect fault detection 

and model identification in linear descriptor systems using the multi-model approach. 

This approach allows the treatment of the problem in two steps. In this chapter, our 

focus will be on the fault detection step of the problem, while the next chapter will 

tackle the model identification step. 

Multi-model fault detection and model identification means that we have two or 

more possible models for a system, and we decide which one corresponds to the system 

based on measurements of the inputs and outputs of the system over a finite test 

period, [0,i/]. While other possible test periods exist, we will restrict our discussion 

to the finite interval. 

In order to exclude all but one model based on input-output measurements, the 

input signal must have special properties. A signal with such properties is called a 

proper detection signal. For the remainder of the present discussion we will assume 

that two possible models exist for the system: the nominal, or unfailed model, and 

26 
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the fault model. This assumption is not restrictive in any way, and later we will 

describe how the algorithm can be extended to include the case in which more than 

one fault model is present. 

2.1.1    Problem Setup 

The true model of the system is one of two models 

x\   =   AiXi + BiV + MiHi (2.1a) 

y   =   dxi + Niin (2.1b) 

for i = 0 and 1, and for t > 0, where xt, y, v, and /i; are the system states, output, 

detection signal, and noise, respectively. The matrices Ah Bi, Cj, Mh and N{ are 

matrices of appropriate dimensions. We assume that v and //; are in L2[0,tj] — L2, 

forcing x{ and y to be in L2 as well. While we assume full row rank of the Mj and Nt, 

and controllability/observability of the system for computational reasons, there is no 

assumption that the dimensions of the state or noise vectors of the two models are the 

same. We also assume no a priori information about the system before t = 0, and in 

particular no information about ^(0). Thus, unlike some existing theory, in particular 

[30], we have no weights on rcj(0). (We will discuss the impact of information about 

initial conditions and the subsequent presence of weight matrices on z;(0) later in this 

chapter.) In addition, we assume that any feedback control has been absorbed into 

the Ai matrices as described in Chapter 1, or else is nulled at t — 0 for the duration of 

the test period. Thus, the only common elements of the two models are the output, 

y, and the detection signal, v. Note that (2.1) is a linear descriptor system since the 

output y is known. 

Consider the detection signal v and let A°(v) be the set of possible outputs asso- 

ciated with this input if Model 0, the nominal model, is the correct model. Likewise, 



Chapter 2.   Fault Detection via the Detection Signal 28 

let Al{v) be the set of outputs if Model 1, the fault model, is the correct model. Then 

perfect model identification based on output measurement implies that 

A\v)nA\v) = %. (2.2) 

This is achievable thanks to the bounded energy noise model. This noise model can 

be expressed as 

Siiin) = INI2 = / ' I^WI2 dt < 1,     i = 0,1 (2.3) 
Jo 

where | • | is the (pointwise) Euclidean norm, and thus || • || is the I? norm. In practice 

one has bounds ||/ij||2 < K. It is always possible to rescale the Mi, Ni to get K = 1, 

so we assume without loss of generality that K = 1. 

This expression for the noise allows us to distinguish between the two basic types 

of detection signals. 

DEFINITION 2.1. The detection signal v is not proper if there exist x0, x\, \i§, \i\, 

and y satisfying (2.1) and (2.3). The detection signal v is called proper otherwise. 

Thus we say that the L2 vector function v is a proper detection signal if its 

application implies that we are always able to distinguish the two candidate models 

based on observation y. That is, condition (2.2) is satisfied [30]. Note that v = 0 is 

not proper since the zero solution is always in the intersection of (2.2). In addition, 

if v is proper then cv is also proper for c > 1, but if v is not proper then there exists 

an e > 0 such that cv is also not proper for 0 < c < 1 + e. These facts will be useful 

when we develop the optimization problem later in the chapter. 

The conditions for the existence of proper detection signals are quite weak. For 

their characterization, let 

£(/)= feA^f{s)ds (2.4) 
Jo 
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be the solution of z' = AiZ + /, z(0) — 0. Then the solutions to (2.1) are 

Xi   =   d(Biv) + diMitu) + eAi% (2.5a) 

y   =   CibiB^ + CiCiiMiri + Cie^Si + Nitn (2.5b) 

for i = 0,1, where & is the free initial condition for X{. Thus the output set for each 

model is the sum of three terms 

• y{ = dCi(Biv) which is a vector depending linearly on the detection 

signal, v, 

• {(dCiMi + Ni)Hi : \\fii\\ < 1} which is an open convex set, 

• {CieAit£i : f* € 3ftn (or Cn)} which is a finite dimensional subspace of L2. 

Because of these facts, and noting that y0 and yx are respectively the outputs of 

Model 0 and Model 1 corresponding to zero noise and zero initial state, we see that 

the output sets A°(v) and Al{v) are translates by y0 and y\ of bounded open sets. 

Since y0 and yx depend linearly on v, either y0 = yi for all v, or y0 - yx can be made 

arbitrarily large with proper choice of v. So proper detection signals exist provided 

the linear mapping of v to y0 is distinct from the linear mapping of v to yx [30]. In 

the time invariant case, this is equivalent to 

Co{sI - AQy
lBQ - Cx(sl - AxY'Bx ± 0 (2.6) 

for some s. 

The amount of energy required for a detection signal to be proper determines the 

separability of the output sets A°(v) and Al(v). 

DEFINITION 2.2. Let V denote the set of proper detection signals v.  Then, 

7* = (inf IWI2 ]   2 (2.7) \vev"      J 

is called the separability index associated with (2.1). 
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Thus, (T*)~
2
 is a lower bound on the energy of proper detection signals. Also, the 

inverse relationship between the separability index and the proper detection signal 

energy indicates that systems with lower energy proper detection signals have a higher 

separability index. The separability index is zero if there are no proper detection 

signals. Later, the algorithm we develop will compute 7* as the objective function 

of an embedded optimal control problem. In Section 2.4.5 we describe an existing 

algorithm that computes 7* [30]. Our approach has the advantage of being able to 

address several problems that the algorithm in [30] cannot handle. 

2.1.2    Formulation as an Optimal Control Problem 

Before we describe the algorithm, however, the problem of finding the minimum 

energy proper detection signal must be formulated as an optimal control problem. 

First, note that for the detection signal v to be not proper, (2.1) must hold as well 

as (2.3). We can rewrite (2.3) as 

max Utf\Mt)\2dt,Jtf\Mt)\2dt\<l. (2.8) 

This expression can also be written as 

0</3<l 

Thus we obtain a useful characterization of not proper detection signals [30] 

LEMMA 2.1.  The detection signal v is not proper if and only if 

max [tJ ß\ßo(t)\2 + (1 - ß)\fü(t)\2 dt < 1. (2.9) 
°<ß<l Jo 

infmax  f ' ß\^{t)\2 + (1 - ß)\vi(t)\2 dt < 1 (2.10) 
°<ß<1 Jo 

where the infimum is taken over {xu^y) in L2, subject to (2.1), i = 0,1. 

This characterization is useful because the algorithm we develop will compute the 

minimum energy proper detection signal by finding the detection signal of smallest 

norm that does not satisfy (2.10). 
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The next step in formulating the computation of the separability index as an 

optimal control problem involves dimension reduction. By assumption the N are 

both full row rank. Thus, we can perform a constant orthogonal change of coordinates 

on the Ni (via a QR decomposition on A^). As a result we obtain 

where Ni is invertible, and 

Ni = [Ni 0] 

Mi = [Mi Mi] 

(2.11) 

(2.12) 

Let ßi = Hi 

KßiJ 
with the same decomposition as Ni, and subtract (2.1b) for % = 1 

from (2.1b) for i = 0. Equation (2.1b) becomes 

0 = C0x0 - Cizi + N0Jl0 - Nuh- (2-13) 

Now we can solve for either /^ and use the resulting expression to eliminate (2.13) by 

substituting it into (2.1a). Solving for JLQ, we obtain 

/O Xr, 

\x1 0 Al 

x0 

X\ 

+ 

M0   M0N0 Ni     0 

0 Mi Mi 
Pi + Bo 

Bi 
v.    (2.14) 

With the obvious correspondences, the reduced system, no longer a descriptor system, 

can be written as 

x' = Ax + Bv + M/i. (2.15) 

Note that we do not require A to be stable. An unstable A is allowable because it 

includes the case in which the original system is stable, the fault model is unstable, 
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and we desire to detect the fault in a short test period to prevent the instability of 

the fault from creating problems for the system. 

The characterization of not proper, (2.10), for the reduced system becomes 

inf max P(x.u.ß)  < 1 
0</3<l 

(2.16) 

where 

P{x,ß,ß) 
tf 

ß(\-N0 C0xQ + N0 ClXl + N0 iV17J1|
2 + |/io|2) + 

(l-flGftf + l/Zil2)*   (2.17) 

and the infimum is now taken over (X:/J) in L2, subject to (2.15). 

The third step in the transformation to an optimal control problem involves using 

the definition of the Euclidean norm to expand the integrand. After doing so and 

combining like terms, we can rewrite (2.17) as 

1   /"*/ 

where 

1 is 

P(x, fi,ß) = - /    xTQx + xTHfi + fFRfi dt 
2 Jo 

Q = 2ß 
CJN/N-'CO -C^N-

T
N-

1
C1 

7-T^TF-l ^rr-T^-1. 
-CfN,  N,C0      CfN,  N^d 

(2.18) 

(2.19) 

H = 4/3 

^TT-T-^T-l- 
0   -CtN0*NQ JVx   0 

-T^TT-l- 
0      C(N0   NQ Ni   0 

(2.20) 

R = 2 

ßl 0 0 

0    {l-ß)I + ßNT
1N0

TN0
lN1 0 (2.21) 

0 0 (1-/5)/ 

Note that Q is symmetric, positive semi-definite and R is symmetric, positive definite. 
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Finally, letting» Sv be the set of L2 functions (x, a) satisfying the constraint? 5(2.15), 

and defining 

Jv(ß)=    inf    P{x,fi,ß) 
(x,/j,)esv 

(2.22) 

we call on a useful result [30]. 

THEOREM 2.1. The function P has at least one saddle point (xs, /A/3") 977, 5„ X 

[0,1] and 

inf    max P(x 
{x,ß)€Sv 0<ß<l 

,u,ß) —   min     max P(x, a, ß) = 
^    '     (x,ß)esv o</3<i 

max     min   P(x,u,ß) - 
0</3<!   (xtli)eSv 

: P(X', /*',/?')■ (2.23) 

Proof (from [30])    Let (x/,f/) be the solution of problem (2.22) .  Then $(/}.?), 

i = 0,1, depend continuously on 0 < ß < 1. Moreover, since 

S0(fißo) = 0,   if/3 = l, (2.24) 

tSo(/io) is continuous for ß G (0,1], and since 

Si(ja?) = 0,    if 0 = 0, (2.25) 

Si(fjbi) is continuous for ß G [0,1). Suppose 

lim SAß?) >0. 
/3->l 

(2.26) 

Then for some 0 < /5s < 1, we must have 

(2.27) 

Let (xs,u.s) = (xß3 ßßs). Then 

P(x8,ß',ß)<Sl(ß\),   V/?G[0,1], (2.28) 
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(holding at equality because ß cancels out) and 

P(x,fi,ßs)>SM),  V(x,n)eSv (2.29) 

because (X
S
,/J,

S
) is the optimal solution of (2.22) for ß = ßs. This implies that 

(xs,ns,ßs) is a saddle point and the rest follows. Now suppose that (2.26) does not 

hold so that 

lim«Si(/2f) = 0. (2.30) 
/3->l 

In that case S0 and <Si can be made arbitrarily small simultaneously. This implies 

that Jv(ß) = 0 for all ß which means that there exists (xs,fis) such that (2.27) holds 

with equality to zero. Then, clearly (2.28) holds because both sides of the inequality 

are zero. In addition, (2.29) holds for all ßs G [0,1] because the right hand side of 

the inequality is zero and the left hand side cannot be negative. This implies that 

(xs, ßs, ßs) is a saddle point and the rest follows. □ 

Note that the above proof in [30] is done with knowledge of, and weight matrices 

on the initial state, Zj(0). In that case, the bounded energy noise model becomes 

Si{xi{0),tJLi)=xi(0)TFifixi(0) + [ f 1/iiOOI2 dt < 1,     i = 0,l. (2.31) 
Jo 

Since each Si is the sum of positive semi-definite terms, letting one term go to zero 

does not alter the proof. 

This result allows us to interchange the order of the inf and the max in (2.16), 

and replace inf with min. Thus 

Jv(ß)=   min   P(x,ß,ß) (2.32) 
(x,fj,)esv 

and, the characterization of not proper becomes 

max JJß) < 1. (2.33) 
0<^<l 
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Expanding this result to its fully explicit form, we see that a detection signal v is not 

proper if and only if 

1   /•*' 

'o 

where the min is subject to 

1   ftf 

max min - /    xTQx + xT H ß + //'Rfj. dt < 1 (2.34) 
0</3<l 2 J0 

x' = Ax + Bv + Mfi. (2.35) 

The inner minimization, the Jv(ß) problem, is a standard LQR optimal control prob- 

lem with an added cross term in the objective function and the forcing function Bv 

in the constraint. Jv(ß) is called the auxiliary cost function for the problem. 

The auxiliary cost function exhibits several useful qualities [12]. 

LEMMA 2.2. For all v e L2, for 0 < ß < l, Jv(ß) is defined and has the following 

properties: 

1. It is zero for ß = 0 and ß = 1, 

2. It is quadratic in v, i.e., for all scalar c, Jcv(ß) = \c\2Jv{ß)> 

3. It is a continuous function of ß, 

4- If v is not proper, then Jv(ß) < 1 for all 0 < ß < 1.  Equivalently, Jv(ß) > 1 

for some ß implies v is proper, 

5. It is a strictly concave function of ß if the set of proper detection signals is not 

empty, otherwise it is identically zero. 

The proof is straightforward and relies on continuity and linearity. It can be found 

in [12]. With this result, we can state the original problem of finding a minimum 

energy proper detection signal v as 

min ||?;|| subject to   max Jv(ß) > 1. (2.36) 



Chapter 2.   Fault Detection via the Detection Signal 36 

Note that the cases ß = 0 and ß = 1 are excluded because Jv(0) = Jv(l) = 0, and 

Lemma 2.2 demonstrates continuity of Jv(ß) at these points. 

Using the fact that Jv(ß) is quadratic in v, we arrive at the following fundamental 

result 

THEOREM 2.2. Let 

r{ß) = sup    f;^    = sup JM- (2-37) 
vjiO J0

; \v\zdt      \\v\\=l 

Then 

(7*)2 = max J*(ß) (2.38) 
V     ' 0</3<l 

where 7* is £/ie separability index defined previously. 

This theorem, while similar to results in [29] and [30], has added technical difficul- 

ties due to the presence of the infinite dimensional space of the independent variable 

and the unbounded finite dimensional subspace of the output sets. Despite these dif- 

ferences, the proof is an extension of that in [29]. However, it is somewhat technical 

and requires functional analysis and convergence theory for sequences. See [12] for 

the complete proof. 

Note that the ease of separating the nominal and fault models of a system is pro- 

portional to the size of 7*. When 7* = 0, the models are indistinguishable regardless 

of the detection signal. 

As a final result before defining the optimization problems we will address, we 

state a useful corollary to Lemma 2.2. 

COROLLARY 2.1. A detection signal v is proper if and only if Jv(ß) > 1 for some 

0< ß< 1. 

Proof   Lemma 2.2, part 4, shows that v is proper if Jv(ß) > 1 for some ß. To show 

the converse suppose that Jv(ß) < 1 for all ß.   For each ß, let {friß), Piiß)} be 
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where Jv(ß) attains its minimum. Clearly, the values producing a minimum at each 

ß endpoint are pi = 0 for ß — 0, and //0 = 0 for ß = 1. Thus there will be a value ß 

where ||/io(ß)|| = ||^i(/?)||. But then ||/ii(^)|| < 1, which shows that v is not proper. 

D 

2.1.3    Problem Statement 

We can now state the two versions of the problem solved by the first half of the 

algorithm. Version One, from (2.37-2.38) is: 

(7*)2=     max    Jv{ß). (2.39) 

IHI = i 

0</3 < 1 

Version Two, from (2.7) and (2.36) is: 

(7*)-2=     min      /     \v\2dt. (2.40) 
Jo 

Jv{ß) > 1 

0 <ß < 1 

These problems will be solved by first calculating the necessary conditions for a 

minimum of the inner problem which defines Jv(ß), then numerically solving the 

outer problem using the previously computed necessary conditions as constraints. 

2.2    Necessary Conditions 

As with many types of optimization problems, the Jv(ß) problem possesses conditions 

that any extrema must satisfy in order to be an optimal solution. In Chapter 1 we 

introduced the necessary conditions for an optimal solution to the standard LQR 

problem. The Jv(ß) problem, while similar, is not the same problem as that discussed 
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in Chapter 1 because of the presence of the cross term in the integral, so in this section 

we develop the necessary conditions for the Jv(ß) problem explicitly. 

2.2.1    Computing the Necessary Conditions 

Recall from (2.32) that 

Jv(ß) = min \ /    xTQx + xTE\i + fiTRfi dt (2.41a) 
2 Jo 

subject to 

x' = Ax + Bv + Mix. (2.41b) 

The Hamiltonian for system (2.41) is 

H = -xTQx + \xTH^i + \pTRn + XT(Ax + Bv + M(i). (2.42) 

As described in Chapter 1, the Euler equations for an extremum are 

(2.43a) 

(2.43b) 

(2.43c) 

m = x' 

Hi = X' 

Hi = 0. 

These conditions applied to (2.42) give 

x'   =   Ax + Bv + Mu, (2.44a) 

A'   =   -QX-IHLI-A
T
\ (2.44b) 

0   =   Rfi + l-ETx + MTX. (2.44c) 

which is an index one DAE in (x, X, (j) since R > 0. 

While our algorithm will use (2.44) in their current form, it will be beneficial to 

define these conditions in terms of a matrix Riccati equation as well. Riccati equations 
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stabilize relatively quickly, and are thus useful in theoretical developments involving- 

long time intervals. The derivation also lends insight into boundary conditions for 

(2.44). In addition, Riccati equations are used extensively in [30, 31]. 

2.2.2    Riccati Form of Necessary Conditions 

To begin, note that the form of (2.41a) is a particular case of a more general problem 

Z = min \x{tf)
TFx{ts) + i [ ' xTQx + xTHfi + /jTRß dt (2.45a) 

2 2,7o 

subject to 

x' = Ax + Bv + Mfj, (2.45b) 

where F = 251, (6 > 0 and small), is symmetric positive semi-definite. The Jv(ß) 

problem is the case in which F — 0, but for the following derivation we leave the F 

term in the cost. A nonzero F matrix is also used in Section 2.4.5. Fixing the initial 

state, x(0) = f, and leaving x{tj) free, we minimize over all possible initial conditions 

to obtain an expression for the optimal cost which will be useful in one form of our 

algorithm. 

Optimal Trajectory 

Noting that extrema of (2.45) must also satisfy conditions (2.44) to be optimal, and 

that R is symmetric positive definite for 0 < ß < 1, we solve for //, in (2.44c) and 

substitute into (2.44a) and (2.44b) to obtain a system in (x, A) 

A-\MR-lHT -MR-lMT (x\ B 
i + 

\HR~lHT - Q \HR-lMT - AT W 0 
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Letting 

S = \MR~lHT 

W = \HR~lHT (symmetric, > 0) 

V = MR~lMT (symmetric, > 0) 

we can simplify the system to 

x A-S        -V 

W-Q   ST-AT 

x 
+ 

B 

0 

a system of 2n linear time invariant differential equations, with the vector 

(2.46) 

B 

0 
acting as the forcing function. The system has the following boundary conditions 

• At t = 0, n boundary conditions are provided by the initial conditions: 

x(o) = e 
• At t = tj, n boundary conditions are provided by the transversality con- 

ditions: 

X(tff 
d 

dx(tf) 
l-x{tf)

TFx(tf) 

Thus 

X(tf) = Fx(tf). (2.47) 

To determine the form of the relationship between x and A, let £l(t; 0) be the 

2n x 2n fundamental solution matrix for (2.46). Then 

r B 

'o 

x{t) -n(t-o) r(0) 

Mt) '        Uo), ./o 0 
v dr 

Shifting this equation to the right end of the interval, we obtain 

xm=mt)\{^)+l
tfn-^t) 

,A(i/), A*). 

B 

0 
v dr 
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Partitioning «(£/; t) into four n x n blocks 

n(tf-t) 
nu(tf;t) n]2(tf-t) 

fi2i (</;<)  fi22(«/;<) 

leads to 

z(i/)   =   fiHx(t) + n12A(t) + n /    fi    (T;t)Bvdr 

x(tf) = n21x(t) + n22\{t) 

(2.48a) 

(2.48b) 

~-i 
where ft and ft     are the parts of ft and ft  L which conform to x(t).   Combining 

(2.47), (2.48a), and (2.48b) 

^  rli £-i 
ft21:r(i) + ft22A(i) = Fttux{i) + Ffti2A(£) + Fft /    ft   (r; £)Bwdr 

leads to an expression for X(t) 

+ [«22 (*/; <) - Fnl2{tf; t)}-1 FQ{tf; t) //' ft    (r; *)ßu dr 

provided the indicated inverse exists. Note that att — tf, we know that ft(£/; tj) = J, 

i.e., 

Thusfi22(t/;t/; 

so that 

fin(i/;i/) = fi22(</;</)=/ 

fi12(t/;i/) = fi21(t/;t/) = 0 

-Fnl2(tf;tf) = I is nonsingular. Also Fnu{tf; tf) - ft2i {tf, tf) = ^ 

A(i,) = IFx(tf) + IFIO = Fx{tf) 

in agreement with (2.47). Kaiman, et al., [20] have shown that the inverse exists for 

all t0 <t < tf, so (2.49) is valid. 
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The form of (2.49) leads us to believe that x(t) and X(t) are related by 

\{t)=K(t)x(t)-g{t). (2.50) 

From (2.46), we know that 

x1 = {A-S)x-VX + Bv. 

Combining this equation with (2.50) results in the expression of the optimal trajectory 

x' = (A-S- VK)x + Vg + Bv. (2.51) 

Riccati Equation 

Differentiating (2.50), we obtain 

A' = K'x + Kx' - g'. (2.52) 

Substituting (2.51) into (2.52), we obtain 

A' = [K1 + K(A -S)- KVK]x + KVg + KBv - g'. (2.53) 

From (2.46), we also know that 

\> = (W-Q)x + (ST-AT)\. 

Combining this equation with (2.50) results in 

A' = {(ST - AT)K + W - Q]x + (AT - ST)g. (2.54) 

As long as an optimal solution exists, (2.53) and (2.54) must hold for all x and t. 

Equating coefficients yields 

K' = (ST - AT)K + K{S -A)+ KVK + W-Q (2.55) 
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and 

9' = (ST - AT + KV)g + KBv. (2.56) 

The boundary conditions for these equations are obtained at t = tj as follows: 

• From (2.50),   X(tf) = K(tf)x{tf) - g{tf), 

• From (2.47),    \(tf) = Fx(tf). 

Both of these must hold for all x{tj), so 

K(tf) = F [in agreement with the note below (2.49)] 

g(tf) = 0. 

With the boundary conditions completely specified at t, = /./, (2.55) and (2.56) 

can be solved to obtain K(i) and g(t) uniquely for all t <E [0, tf\. Furthermore, if K(t) 

is the solution of (2.55), and K(tj) = F, then K(t) is symmetric for all t G [0,tf], 

because 

(K'f = [(ST - AT)K + K(S -A) + KVK + W-Q] T 

and thus 

(KT)' = KT(S -A) + (ST - AT)KT + KTVKT + W-Q 

since W and Q are symmetric, which means that K and KT are solutions of the same 

Riccati equation. This fact, combined with the boundary condition K{tj) — F = 

K(tf)T, and the uniqueness property of ODE solutions, implies that K = KT. 

In fact, K is also positive definite and bounded for all t e [0, i/].  To see these 

facts, we must first show W - Q to be negative definite. Recall the construction of 

the M matrix 

-l- 

M = 
M0   M0N0 Nx     0 

0 Mi Mi 
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where 

Mi = Mi   Mi ,  Ni = Ni   0 

We have assumed that each Mi is full row rank, and that the coordinate change 

is done such that Ni is invertible. This implies that M is full row rank, and thus 

V = MR~lMT is symmetric positive definite, since R is symmetric positive definite. 

Letting C - N~lCQ   -N'd , we can rewrite Q and H as 

Q = 2ßCTC 

H = -AßCTN0
1 

0   Ni   0 

Thus 

W   =   \HR-1HT 

=   Hl6ß2)C<N0 
-l 

0   JVi   0 R -l 0   iVi   0 

2ß2CrN0
1N1   (l-ß)I + ßN1

1N0
1N0 ^ 

-1-1 

1 T NJC 
 T T 
N\N,TC. 

-1-IT Performing a singular value decomposition on iV0  Ni, we obtain 

NQ
lNi = UEV = U 

ax     0      0 

o   •••   0 

0     0    om 

V 

where, since (iV0 Ni)~l exists, all o-j are bounded away from zero. Then 

W   =   2ß2CTUZV 

=   2ß2CTÜE 

{l-ß)I + ß{UZV)T(UZV)      (UEVfC 

=   2CTU 

(l-/5)/ + /3E2 

0 

-1 

-1 

EUTC 

{l-ß)+ßaj 

0 

0 

0 

ß2"'m 
(l-ß)+ßal 

UTC 
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and 

Q = 2ßCl C = 2ßC UU1 C 

Subtracting, we obtain 

W-Q   =   2CTU 

2CTU 

_£fl 
(\-ß)+ßv? 

ß2°2i 
(i-/3)+^;2 

UTC - 2CTUßIÜTC 

ß UTC. 

At ß = 1, {lIß£ßa2 ~ ß = 0, and at ß = 0, {l_%%a2 - ß = 0. This expression is 

quadratic in ß, and so it can have at most two distinct roots. Thus, for values of ß 

between 0 and 1, it will either be positive, or negative (or identically zero, which it 

is not), but not a combination of both. Evaluation at the midpoint of the interval 

shows that the expression is always negative. This fact implies that W - Q is negative 

definite. 

Now in solving the Riccati equation (2.55) in backward time 

K' = {ST - AT)K + K(S -A) + KVK + W-Q 

at t = tf, we know that K(tf) = F = 281, where S is nonnegative and small. Thus 

K'(tf) = (small) + (smalt) + (smalt)2 + (negative definite) — (negative definite) 

and thus 

K(tf - At) > 0. 

If 5 = 0, the same result holds.  Thus we see that if F is symmetric positive semi- 

definite, then K(t) is symmetric positive definite &tt = tf- At. Either K(t) remains 
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positive definite in backward time or it does not. If it remains positive definite, then 

at those times, r, when it begins to lose definiteness, xTK(r—At)x > 0 for all nonzero 

vectors x- If K(t) does not remain positive definite, then at those times, r, when 

K(T) loses definiteness there must exist a nonzero vector x, for which K(T)X = 0. If 

this is true, 

XTK'(r)X   =   X
T(ST - AT)K(r)x + XTK(r)(S - A)X + 

XTK(r)VK(r)X + XT(W-Q)x 

=   0 + 0 + 0 + (negative definite). 

That is, X
T
K\T)X < 0, which implies that X

T
K(T - At)x > 0, and K(r - At) 

becomes positive definite again. Since this true for any vector that causes loss of 

positive definiteness as well as those vectors that do not, it is true for all vectors. 

Thus K(t) remains positive definite. 

Furthermore, at t = r + At, for any nonzero vector x, for which K(r)x — 0, 

X
T
K\T + At)x = (small) + (small) + (small)2 + (negative definite) 

which implies xTK'(r+At)x < 0. By the same argument then, K(T) cannot continue 

to lose definiteness, and is therefore bounded below, away from zero. 

To see that K is bounded above, multiply (2.55) by K"1 on both sides. 

K-^K'K'1 = K~l(ST - AT) + (S- A)K~l + V + K~1(W- Q)K~\ 

Since (K-1)' = -K^K'K'1 

(K-1)' = K~l(AT - ST) + (A- S)^1 + K'l(Q - W)K~l + (-V) 

which, since Q - W > 0 and (-V) < 0, is the same Riccati equation as (2.55), with 

K~l as the solution. So, by the same argument as that above for K(t), K(t)_1 is 

bounded away from zero. This fact implies that K(t) is bounded above as well. Thus, 
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if F is symmetric positive semi-definite, then K(t) is the symmetric positive definite 

solution to a matrix Riccati equation, bounded above for all t 6 [0,t/). 

Optimal Cost 

Returning to the cost function, suppose the optimal cost-to-go at time t has the form 

Z*(ß, t) = \x{t)TK{t)x(t) - g(t)Tx{t) + tp(t). (2.57) 

To obtain an expression for ip(t), define the Hamilton-Jacobi equation for the system 

as 

£tZ*{ß,t) + mirv [\xTQx + \xrEii + l/jTRfi 

+(Ax)TfxZ*(ß,t) + (Bv)TfxZ*(ß,t) + (Mfi)T£Z*(ß,t)} = 0. 

Letting X(t) = ^Z*(ß,t) be the Lagrange multiplier as before, the \\, that mini- 

mizes the expression in brackets is given by (2.44c). Substituting for /i in (2.58) and 

expanding, we obtain 

<*Z* + -xT(Q - W)x + xT(AT -ST)\- hTVX + vTBX = 0 (2.59) 
at 2 2 

where S, W, and V are as before. Now, if (2.57) is correct, then 

1 

Thus 

and 

Z* = -xTKx - gTx + (p. 
Li 

l-Z* = -xTK'x - g,Tx + if' 
dt 2 

Z* = X = Kx - g. 
ox 
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Substituting these into (2.59), then expanding and combining like terms we obtain 

\xT [K' + Q-W + (AT- ST)K + K{A - S) - KVK] x 

+xT [-g' + {ST -AT + KV)g + KBv] (2.60) 

+y'-\gTVg-vTBTg   =   0. 

For (2.60) to hold for all x and t, (2.55) and (2.56) must hold, and 

^ = \gTVg + vTBTg (2.61) 

must also hold. Boundary conditions for ip, obtained from (2.57) at t = tf, are 

Z*(ß,tf) = l-x{ts)
TK(tj)x{t}) - g(tf)Tx(tf) + <p{tf). 

Since K(tj) = F, and g(tf) — 0, this expression reduces to the terminal cost, 

lx(tJ)TFx{tf),li<p{tI) = 0. 

To obtain an expression for the total optimal cost, first note that the total cost 

for the fixed initial condition problem is 

The solution for the free initial state problem is obtained by letting f vary, and 

minimizing Z* over the initial states. We find the necessary condition for a minimum 

is 

^Z* = fK(0) - g(0)T = 0. 

Note that from (2.50) 

A(0f = x(0)TK(0) - g(0)T = £rK(0) - g(0)T. 

Thus the optimal Z* for the free-endpoint problem occurs when A(0) = 0 

z*(ß) = ieKm-g(Qn+<p(u) 
= [eK(o)-g(om-ieKm+<p(o) 
=   <p(0) - \x{0)TK(0)x(0) 
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and since 

A(0) = K{0)x{0) - </(0) = 0 (2.62) 

then K(0)x(0) — g(0), and we obtain the expression for the optimal cost 

Z*(ß) = ^0)-1-x(0)Tg(0). (2.63) 

Summary 

The necessary conditions for an optimal solution to the Z problem, (2.45), can be 

represented in terms of a stable matrix Riccati differential equation and two linear 

vector differential equations. The above derivation is completely consistent with the 

case F = 0. Thus, the Jv(ß) problem can be characterized in terms of these derived 

quantities. In the next section, we will formulate the max min problem in terms of 

the two forms of the necessary conditions derived above. 

2.2.3    Problem Formulation in Terms of the Necessary Con- 

ditions 

The previous discussion can be summarized by expressing (2.39) and (2.40) as bound- 

ary value problems (BVPs) in terms of the two forms of the necessary conditions: the 

raw form, (2.44), and the Riccati form, (2.55), (2.56), (2.51), (2.61), and (2.62). 

Using the raw form of the necessary conditions, Version One, (2.39), becomes 

(7*)2 = maxZ(t/) (2.64a) 
v,ß 
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subject to the constraints 

x' = Ax + Bv + Mfi (2.64b) 

A' = -Qx - \HH - ATX,   A(0) = \{tf) = 0 (2.64c) 

6' = vTv,  0(0)-0,   6{tf) = l (2.64d) 

Z' = l[xTQx + xTHß + ßTRfi\,   Z{0) = 0 (2.64e) 
Al 

0   =   Rix+l-HTx + MT\ (2.64f) 
A 

0 < j9 < 1. (2.64g) 

Equations (2.64) are an index one BVP in (X,X,6,Z,/J,) since Ä > 0. Version Two, 

(2.40), becomes 

**/ 

'o 

subject to the constraints 

(7*)~2 = min /    \\v\\2dt (2.65a) 
^ Jo 

x'   =   Ax + Bv + Mß (2.65b) 

A'   =   -Qx-\Hn-AT\   A(0) = A(t/) = 0 (2.65c) 

Z'   =   i[:rrQz + zr#/j+ //#//],   Z(0) = 0, Z(*,)>1          (2.65d) 
A 

0   =   i^+itfTz + MTA (2.65e) 
A 

0 < /? < 1. (2.65f) 

Using the Riccati form of the necessary conditions, Version One, (2.39), becomes 

1 
(7*)   = max V(0) - §z(0)rs(0) (2.66a) 
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subject to the constraints 

K 

9 

x 

<P' 

e 

o = 

(ST - AT)K + K{S -A) + KVK + W-Q,   K{tf) = 0 

{ST -AT + KV)g + KBv,   g(tf) = 0 

(A-S- VK)x + Vg + Bv 

\gTVg + gTBv,   <p(tf) = 0 

V
T

V)   e(0) = 0,   6{tj) = 1 

A-(0)a;(0) - g{0) 

0<ß < 1. 

(2.66b) 

(2.66c) 

(2.66d) 

(2.66e) 

(2.66f) 

(2.66g) 

(2.66h) 

Version Two, (2.40), becomes 

(7 
*\-2 mm /     llull dt 

«.0 Jo 

subject to the constraints 

(2.67a) 

K'   =   {ST - AT)K + K(S -A) + KVK + W-Q,   K{tf) = 0    (2.67b) 

g>   =   (ST-AT + KV)g + KBv,  g{tf) = 0 

x'   =   (A-S-VK)x + Vg + Bv 

<p'   =   \gTVg + gTBv,   <p(tf) = 0 

0 =   K(0)x(0)-g(0) 

1 <   <p(P)-\x(0)Tg(0) 

0<ß< 1. 

(2.67c) 

(2.67d) 

(2.67e) 

(2.67f) 

(2.67g) 

(2.67h) 

Equations (2.64e) and (2.65d) define Jv(ß) explicitly, while (2.67g) and the right hand 

side of (2.66a) define it in terms of (2.63). Equations (2.65d) and (2.67g) also reflect 

the requirement for v to be proper, Jv(ß) > 1. Note that both formulations of Version 

One, (2.64) and (2.66), require the detection signal to be normalized. Thus, for these 



Chapter 2.   Fault Detection via the Detection Signal 52 

problems, the minimum energy proper detection signal must be rescaled by ^. No 

rescaling is necessary for the formulations of Version Two, (2.65) and (2.67). 

2.2.4    Sufficient Conditions 

The arguments of the two previous sections relied on the assumption that the nec- 

essary conditions guaranteed a minimum. Sufficient conditions for a local minimum 

are in fact included in the necessary conditions as well. To see this fact, recall that 

the Hamiltonian for our problem is 

•~      1 1 1 
H = -xTQx + -xTE\i + -\?R\x + XT{Ax + Bv + Mix). 

Zi L> £> 

It is a well known fact (Athans and Falb [1], for example), that if the matrix 

d2H        d2H 
dx2       dx ö/i 

d2H        d2H 

(2.68) 

(2.69) 

dji dx       dp.2 

is positive semi-definite, then the noise, //, which satisfies 

Hß = 0 (2.70) 

(one of the Euler equations) is at least locally optimal. From (2.68), we find that 

=   Q 

dH 
dx 

82H 
dx2 

dH 

d/j, 

82H 
<V 

d2H     =   1H 

dx du 2 

d2H     =   lRT 

d\i dx 2 

Qx + -HfM + ATX 
ZJ 

1 
R\i + i-HTx + MTX 

Li 

R 

(2.71a) 

(2.71b) 

(2.71c) 

(2.71d) 

(2.71e) 

(2.71f) 
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Substituting (2.71) into (2.69), we obtain 

Q     \H 

\H?    R 

which is equivalent to GTG, a symmetric positive semi-definite matrix, where 

(2.72) 

G 

^ßNö'Co -y/ZpNö'Ci 

0 0 

0 0 

0 0 

0 0 

0 

0 

Tßl 

/2ßN~1N1 

0 

0 

0 

0 

0 

0 0 y/2(l-ß)I 

o o ^2(1 - ß)1 

(2.73) 

Thus (2.72) is positive semi-definite. Since the higher derivatives of H are zero, the 

noise, //, obtained from (2.70) and (2.71c) minimizes, at least locally, the cost, [1]. 

2.3    The Minimum Energy Detection Signal Algo- 

rithm 

It is useful at this point to put the detection signal problem in algorithm form. 

The algorithm described below is suitable for solving in Boeing's Sparse Optimal 

Control Software (SOCS) [3, 4]. The SOCS package is a collection of FORTRAN 

77 subroutines capable of solving a great variety of optimal control problems. The 

package can handle many types of constraints, including L2 and algebraic constraints, 

which are the types of constraints generated by the problems considered in this thesis. 

The main drawback of the software is that it is written in FORTRAN 77, which has 

limited matrix capability, and therefore requires translation of all system parameters 

into indexed variable form. This can be overcome by the use of additional software 

which can automatically generate FORTRAN code from matrix formatted input. In 
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Appendix A, we describe routines in MATLAB, by The MathWorks, Inc. [26] and 

MAPLE, by Waterloo Maple, Inc. [18] which can be used to accomplish the required 

translation, as well as a sample SOCS driver file. 

The algorithm requires the system model to be in the form previously described 

x'i   =   AiXi + BiV + Mifii (2.74a) 

y   =   dxi + Niin (2.74b) 

for i = 0 and 1, where Xi, y, v, and \ii are the system states, output, detection signal, 

and noise, respectively. The matrices Ai, Bi, Q, Mi, and JVj must be matrices of 

appropriate dimensions, with M; and Ni having full row rank. In addition, [Ai Cj] 

must be observable. 

The minimum energy detection signal (MEDS) algorithm (with appropriate soft- 

ware in parentheses): 

1. Perform QR decomposition on N? (MATLAB) 

Nf = QiR, (2.75) 

where the Qi are unitary matrices. Thus 

N> = RJQJ (2.76) 

2. Perform constant orthogonal coordinate changes on /i; (MATLAB) 

(a) Let Rj = [Ni 0], where Ni is invertible 

(b) Let Qf fa =      ' I with the same partitioning as Rj. Thus 

vv 

NiPi = [NiO]rj\ (2.77) 
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(c) Let MiQi    — [Mt Mi] with the same partitioning as R{ . Thus 

MifM = MiQfCgm = [Mi Mi] 
Hi 

Mi 

(2.78) 

Note the system model, (2.74), becomes 

x'i   =   AiXi + BiV + MiJli + Mißi 

y   =   dxi + Nifii 

(2.79a) 

(2.79b) 

3. Reduce model dimension by eliminating y and /i0 (MATLAB) 

(a) Combine both equations (2.79b) for y, solve for JJ,0, and substitute into 

(2.79a), i = 0 

x'0 = {A0 - MONQ'C^XO + MoÄT^dzi + B0v + M0ßo + Mo^NiTh 

(2.80) 

(b) Let 

x 
x0 

,xi 

A = 
Ao-MoN-'Co   MQN~lC} 

0 Ai 
B = 

Bo 

Bl 

M = 

7-1- 
M0   M0N0 N!     0 

0 Mi Mi 
, V Pi 

Note the system model, (2.79), is now 

x' = Ax + Bv + M\i (2.81) 

4. Compute new system matrices (MATLAB) 
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(a) Let C = [N0
1CQ   - N0

ld] and N = N0\o Nx 0], with the columns of 

N conforming to \x 

(b) Let H = -AßCTN and Q = 2ßCTC 

(c) Let 

R = 2 

ßl 0 0 

0    (l-ß)I + ßNT
1N0

TN-1N1 0 

(1 - ß)I 0 0 

with its rows and columns conforming to \i 

(d) Compute A, B, M, H, Q, and R 

(e) For Riccati version, compute S = iMR^H7, W = ±HR-lHT, and V = 

MR-XMT 

5. Perform constrained optimization (SOCS) 

(a) Version One, solve 

{i*)2 = mtpZ{tf) (2.82a) 

subject to the constraints 

x 

A' 

6' 

Z' 

0 

Ax + Bv + M/J, 

-Qx - \EIX - AT\,   A(0) = X(tf) = 0 

V   V ,   0(0) = 0,   9(tf) = l 

- [xTQx + xTE[i + fiTRu] ,   Z(0) = 0 

RH + \HT
X + MTX 

0.01 < ß < 0.99 

(2.82b) 

(2.82c) 

(2.82d) 

(2.82e) 

(2.82f) 

(2.82g) 
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(b) Version Two, solve 

•tj 

(7T
2 = min/     | 

v>ß Jo 
vfdt                             (2.83a) 

to the constraints 

x'   =   Ax + Bv + M\i (2.83b) 

X'   =   -QX - l-En, - AT\   A(0) : = \{tj) = 0                    (2.83c) 

Z'   =   - [xTQx + X
T

HIL + ixTR,u] Z(0) = 0,   Z(tf) > 1 (2.83d) 

0   =   RIX+\H
T

X + M
T
\ (2.83e) 

0.01 < ß < 0.99 (2.83f) 

(c) Version One, the Riccati form, solve 

(7*)   = max 
1 

v(o) - ^(o)Tg(o) 

subject to the constraints 

(2.84a) 

K 

9 

x1 

V' 

& 

(ST - AT)K + K{S -A) + KVK + W-Q (2.84b) 

=   (ST -AT + KV)g + KBv,   g(tf) = 0,   K(tf) = 0 (2.84c) 

= (A-S-VK)x + Vg + Bv 

= \gTVg + gTBv, ip(tf) = 0 

=   vTv,   6{0) = 0,   6(tf) = 1 

0   =   K(0)x(0)-g(0) 

0.01 <ß <0.99 

(2.84d) 

(2.84c) 

(2.84f) 

(2.84g) 

(2.84h) 

(d) Version Two, the Riccati form, solve 

(7*) 
*\-2 

h 
mm /     ||i>|   dt 
v,ß Jo 

(2.85a) 
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subject to the constraints 

K' = {ST-AT)K + K(S-A)+KVK + W-Q (2.85b) 

9' = (ST-AT + KV)g + KBv,  g(tf) = 0,   K{tf) = 0 (2.85c) 

x' = {A-S-VK)x + Vg + Bv (2.85d) 

¥>' = \gTVg + gTBv,   <p{tf) = 0 (2.85e) 

0 - K(0)x(0) - 0(0) (2.85f) 

1 < ¥>(0) - ^(0)r$(0) (2.85g) 

0.01 < ß < 0.99 (2.85h) 

For each formulation, v and // are treated as control variables while ß is passed to 

SOCS as a parameter. The constraint (2.85h) and the others identical to it are 

required to bound ß away from 0 and 1 early in the optimization process. The 

minimum energy proper detection signal, v, is -^ for (2.82) and (2.84). The minimum 

energy proper detection signal, v, is simply v for (2.83) and (2.85). 

2.4    Variations 

The assumptions and problem formulations described above limit the types of prob- 

lems that may be solved by the MEDS algorithm. This fact leads to questions about 

extending the algorithm to variations of the problem: Can the algorithm handle prob- 

lems with more than one fault model? What if the problem must be formulated more 

in terms of the original system matrices? What happens when a control is already 

present in the model? Could alternative cost functions be minimized? Does knowl- 

edge of initial conditions impact the theory? This section will address these questions 

and demonstrate the flexibility of the algorithm. 

It should be noted that while this section uses Equations (2.65) as the form of the 
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model around which we describe variations, any of the four forms could be used. It is 

not our intent to promote one form of the algorithm over another, merely to present 

the options available. 

2.4.1    Multiple Fault Models 

Many, if not most, real world systems which are represented as multi-model control 

systems have more than one fault model. Unfortunately, this is one of the types of 

problems that approaches such as [30] are unable to efficiently address. However, 

our MEDS algorithm can solve the problem in one of two ways. For this discussion, 

assume that three models exist for the system: the nominal model, (i — 0), and two 

fault models, (i = 1,2). Obviously, problems with more than two fault models may 

be solved with either method using combinatorial extensions. 

The first method applies the MEDS algorithm in a sequential manner, an ineffi- 

cient approach which [30] is forced to take. Dividing the test period, [0, tj], into three 

subperiods, [0,^], [^, ^], and [^-,tf], use the algorithm to solve model 0 versus 

model 1 in the first subperiod for v0i, model 0 versus model 2 in the second subperiod 

for t>02) and model 1 versus model 2 in the final subperiod for t>12. Because a detection 

signal which is proper on an interval is still proper on any longer interval including 

the original interval (due to the fact that an L2 noise on the test period has the same 

or smaller norm on a shorter subperiod), the composite v obtained by applying t>0i on 

[0, ^], then v02 on [^, ^], and then vn on [-^-,tf], will be a proper detection signal. 

It will also be the minimum energy proper detection signal for the problem via this 

approach. 

Since this method involves shorter test periods for the individual comparisons, it 

has a tendency to produce detection signals of higher than necessary energy. The 

second method avoids this tendency by simultaneously solving all three subproblems 
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independently over the entire test period for a common v, an approach of which many 

prior methods, including [30], are incapable. Consider 

(7T
2=      min      ftf\\v\\2dt (2.86a) 

V,P01,PQ2,P12 J0 

subject to the constraints 

x 01 =   A0ixQl + B01v + M0im (2.86b) 

A'oi    =   -QQIXQI - -tfoiMoi - ^oiAoi,   Aoi(0) = A0i(i/) = 0 (2.86c) 

zk   =   2 KiQoizoi + »oi^oi/ioi + l4iRoim] , Z01 (0) = 0, Z0i(tf) > 1 (2.86d) 

0   =   Roim + 2^01^01 + M^Xoi (2.86e) 

0.01 < A,i < 0.99 (2.86f) 

x'02     =     ^02^02 + #02^ + M02/i02 (2-86g) 

A02   =   -Q02Z02 - 2-^02^02 - A%2\02,   A02(0) = A02(*/) = 0 (2.86h) 

^02     =     2 [2;02(3022;02 + XQ2H02ß02 + ^02^02^02] , ^02(0) = 0,  Z02(i/) > 1   (2.86i) 

0   =   Ä02M2 + 2^02^02 + M0
r

2Ao2 (2.86j) 

0.01 < ,002 < 0.99 (2.86k) 

x'l2    =   Al2xl2 + B12v + M12M12 (2-861) 

A'12    =    -Ql2x12 - ^H12m - Aj2Xl2, A12(0) = A12(i/)=0                      (2.86m) 

Z'n   =    \ [xl2Qx2Xx2 + xf2H12^l2 + tf2Ri2Vi2\ , Zl2(0) = 0, Z12(tf) > 1 (2.86n) 

0    =    Ä12M12 + 2^2^12 + A*£Ai2 (2.86O) 

0.01 < /812 < 0.99 (2.86p) 

where a vector^ or a matrix^- is the unsubscripted vector/matrix in the simple model 

(2.65) when model i and model j are the two models for which the problem is being 

formulated. Note that only the detection signal is common between models. This 

independence increases the size of the problem with both the size and number of 

models. 
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It should also be noted that if the goal is to detect a fault, but it is not important 

to distinguish between fault models, the detection signal should be minimized by 

solving only those pairwise problems including the nominal model ( i.e., in the three 

model case, model 0 versus model 1, and model 0 versus model 2). The nominal 

model will then be distinguishable from the fault models, but individual fault model 

outputs may overlap each other. These cases will be discussed further in the next 

chapter. Examples of multiple fault model problems are included in Chapter 4. 

2.4.2    Unreduced Model 

In addition to multiple fault models, many system models have parameters which 

represent some kind of physical quantity. Model reduction hinders the ability to 

match parameters with real quantities, and so it may be useful in these cases to 

formulate the problem more in terms of original system equations. Consider the 

characterization of not proper, (2.10), after applying the result, (2.23) 

•*/ 
x min / 

°</3<l Jo 

with the minimum subject to 

max min/    ß\u.0(t)\
2 + (1 - ß)\/M{t)\2 dt < 1 (2.87a) 

x'Q   =   AQXQ + B0v + M0/io 

x\   =   Axxi + Biv + Mi/ii 

0   =   CO-TQ - CiXi + Noßo - Nifii. 

Instead of reducing (2.87) as before, let 

x = V 

A0    0 

0    Ax 

>   vß Vß = 2 
ßl 0 

0    (l-ß)I 

,   B = 
B0 

B, 
M = 

MQ     0 

0     Mi 

(2.87b) 

(2.87c) 

(2.87d) 
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C = [C0   -d],   N=[N0   -N,}. 

Then the characterization of not proper, (2.87) becomes 

1   f'f 
ix mm 

0</3 

with the minimum subject to 

1   ftf 

max min - /    uTVßu dt < 1 (2.88a) 
)</3<i        2i0 

x'   =   Ax + Bv + Mfi (2.88b) 

0   =   Cx + Nii. (2.88c) 

The Hamiltonian for the inner problem is 

H = \vTVßii + \l{-x' + Ax + Bv + My) + Xj(Cx + Nfi).          (2.89) 

Applying the necessary conditions, (2.43), to (2.89), we obtain 

0   =   VßfL + MTXQ + NTXl (2.90) 

A^   =   -^Ao-C^Ai (2.91) 

as well as (2.88b)-(2.88c).   Thus we obtain an unreduced problem that can be ex- 

pressed in the same form as the reduced problem. In terms similar to (2.65) 

(7*)~2 = min [ ' \\vfdt (2.92a) 
v>ß Jo 

subject to the constraints 

x'   =   Ax + Bv + Mn (2.92b) 

0   =   Cx + NfjL (2.92c) 

A'0   =   -ATX0-CTX1,   A„(0) = X0(tf) = 0 (2.92d) 

Z'   =   \l?Vßli,   Z(0) = 0,   Z{tf)>l (2.92e) 

0   =   Vßn + MTX0 + NTXl (2.92f) 

0 < ß < 1. (2.92g) 
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For this formulation to be worthwhile, the benefit obtained from association of 

model parameters with quantities of interest should outweigh the impact of the in- 

creased dimension of the problem. In addition, (2.92b) and (2.92c) comprise an index 

one BVP, so optimization software used to solve it must have the capability to handle 

DAEs. 

2.4.3    Controlled Systems 

Even in cases for which a reduced model is acceptable, the presence of a known ref- 

erence control, u, may appear to complicate matters. In actuality, controlled systems 

can easily be handled by the algorithm. By using the same input channels for the 

detection signal, v, and the control, u, the problem goes from 

minlMI subject to   max JJ/5) > 1 (2.93) 
11  "        J o</3<i     KH' ~ 

to 

min llüll  subject to   max Ju+V(ß) > 1. (2.94) 
" 0</3<l 

Thus instead of v appearing in the constraints, u + v would appear. Note that in this 

case, it is possible that a zero detection signal may be the minimum proper. This 

would occur when the control by itself is already proper. 

If the reference control does not come in on the same channels as the detection 

signal the differential equation becomes 

x'i = A{Xi + Btv + EiU + Mim. (2.95) 

By letting w = [wi,W2] = [v,u], we can construct a problem similar to (2.94) 

min H^ill subject to   max Jw(ß) > 1 and w2 = u. (2.96) 
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An alternative approach to solving the controlled system is to eliminate u just 

as we eliminate the output, y, to obtain (2.13). Using the expression for the known 

control, model reduction is accomplished as described in Section 2.1.2. 

2.4.4    Alternative Cost Functions 

Another complication occurs when the energy of the detection signal is not the desired 

cost function. One possible alternative cost function is the power of the detection 

signal, with noise of bounded power. For this case, the noise model, (2.3), becomes 

||^||2= [tf \^(t)\2 dt < Ktf,     i = 0,l,K>0. (2.97) 
Jo 

By retracing the problem development in the first part of this chaper, we see that the 

only differences between the bounded power noise/minimum power detection signal 

case and the bounded energy noise/minimum energy detection signal case are the 

values of the right hand sides of the inequalities (2.3) and (2.97), and the scaling 

of the objective function. Thus, for the bounded power/minimum power detection 

signal problem, (2.65) becomes 

mm-^ [f \\v\\2dt (2.98a) 
v,ß Ktf J0 

subject to the constraints 

x'   =   Ax + Bv + Mfi (2.98b) 

A'   =   -QX-\H^-A
T

X,   A(0) = A(t/) = 0 (2.98c) 

Z'   =   l[xTQx + xTHfi + fjTRij],   Z(0)=0, Z{tf)>Ktf       (2.98d) 

0   =   Rfi+lHTx + MTX (2.98e) 

0 < ß < 1. (2.98f) 

Other alternative problems that introduce complications no more difficult than 

those above include 
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• bounded power noise/minimum energy detection signal, 

• bounded power noise/minimum of a function of the detection signal (Qx + 

Rv), 

• bounded energy noise/minimum of a function of the detection signal (Qx+ 

Rv). 

Each of the problems in this list is easily constructed and efficiently handled by SOCS. 

2.4.5    Knowledge of Initial Conditions 

As a final variation on the problem, consider the case in which a weighted initial 

condition is added to the noise constraint. In this case, instead of the bounded 

energy noise model, (2.3), we have 

Si{xi(0),fjLi) = XiiOfPrfxiiO) + /    \fXi{t)\2dt < 1,     i = 0,1 (2.99) 
Jo 

where the rr^(0) are the initial states and the P^1 are the weight matrices. This can 

also be generalized to 

Sai!i(xi{0),Lii) = [xi{0) - cufPrJlxiQ) - a*] + /    \m{t)\2dt < 1,     i = 0,1  (2.100) 
Jo 

for some fixed vector ai. (2.99) is the case addressed in [30], and this formulation leads 

to quite a different method. The approach is made possible by the elimination of the 

long axis in each output set caused by the free initial condition. Nikoukhah, et al. [30] 

use standard Kaiman filtering combined with extensive Riccati differential equation 

theory to derive an elegant method for computing the minimum energy detection 

signal and the separability index. One chooses a 7, then solves a Riccati equation 

until it diverges. If the divergence occurs inside the test period, increase 7 and repeat. 

If the Riccati equation diverges past the end of the test period, decrease 7 and repeat. 

Using a bisection method, 7* can be found with any desired accuracy. Once 7* is 

fixed, the minimum energy detection signal is computed by solving a two-point BVP 
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via two other Riccati equations. Thus, whereas our approach is direct, relying on the 

basics of optimal control theory, the approach of [30] is recursive in nature, relying 

on the stability of Riccati matrices. Unfortunately, the approach of [30] is limited to 

linear systems of only two models. 

Our approach, however is not only extendable to certain nonlinear systems we 

discuss in Chapter 5, it can handle systems of more than two models as previously 

mentioned, and it can handle the noise models (2.99) and (2.100). In fact, the theory 

for those noise models is actually slightly simpler due to the elimination of the long 

axis in the output sets. P(x,jj,,ß) from (2.18) becomes 

P(x,fi,ß) = ßx0(0)TP0-0
lx0(0) + (1 - ß)x1(Ö)TPrix1(0) + 

- I ' xTQx + xTE\i + nTRfi dt   (2.101) 
2 Jo 

but the new term is positive as long as Pifi > 0. Thus, Jv(ß) = minP(x,(i,ß) > 1 

still characterizes a proper detection signal. While the boundary conditions change 

slightly, the new term involving the initial conditions does not appear in the varia- 

tional equations. Thus the problem is virtually the same, and we expect the impact of 

the weight matrices to diminish as the test period increases in length. SOCS should 

encounter no difficulties from this variation. 

2.4.6     Conclusion 

While other variations of the basic problem exist which may be more difficult to 

accomodate, it is clear from the cases discussed in this section that the algorithm 

is quite flexible and can be adapted to solve many types of multi-model problems. 

In fact, current theory for the multiple fault model case only provides for problem 

development; it does not provide a practical means with which to solve the problem. 

Our MEDS algorithm not only provides theoretical development for the multiple fault 
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model case, it also supplies a simple method for solving such problems. 



Chapter 3 

Model Identification via the Separating 

Hyperplane 

3.1    The Problem - Determining the Origin of a 

Given Output 

As was shown in the previous chapter, the MEDS algorithm guarantees that the 

output sets, Al{v), from the two possible system models are disjoint. In other words, 

given an output from the system, it is the result of one model or the other, but 

not both. The algorithm does not, however, tell us from which model the output 

is derived. In this chapter, we will address the model identification step, and by 

specifying the correct model for a given output using a separating hyperplane, we 

will complete the development of our multi-model approach to fault detection and 

model identification in linear descriptor systems. 

68 
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3.1.1    Problem Setup 

Recall that the true model of the system is one of two models 

x\   =   AiXi + BiV + MM (3.1a) 

j/i   =   dxi + Nifii (3.1b) 

for i = 0 and 1, where all variables are as previously defined except v, which is now 

the minimum energy detection signal from the MEDS algorithm. In addition, with 

the application of v, each model has a distinct output, and so the output, y, is now 

subscripted. 

Recall also from Section 2.1.1, that the output sets, Al(v), are open convex sets. 

The sets are open because ||/i2|| < 1 and the Ni are full row rank. In effect, the 

noise contribution to an output set can be likened to the addition of an open "ball" 

(in the L2 sense) to the boundaries of the noiseless output sets. The fact that the 

minimum energy detection signal is being applied implies that while the output sets 

are disjoint, their closures share at least one common point at any given time. This 

occurs due to the definition of minimum proper. Suppose a detection signal which 

is infinitesimally "smaller" than the minimum energy detection signal is applied. In 

this case, the detection signal would not be proper, and the output sets would not 

be disjoint. In order for the open output sets to intersect with the application of the 

infinitesimally smaller detection signal, the closures of the output sets must intersect 

with the application of the minimum energy proper detection signal. 

Assuming a unique point of intersection of the closures of the output sets, which 

occurs when at least one of the sets is strictly convex, that point is easily computed. 

Recall from the previous chapter that the output equations were combined in order 
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to reduce the dimension of the model. That is 

y   =   Coxo + N0ß0 (3.2a) 

y   =   ClXl + Nm (3.2b) 

were equated to each other to eliminate y. When the optimal trajectory, xi, and 

the "optimal" noise, fa, (from the optimal solution to the MEDS algorithm) are 

substituted into equation (3.2b), the resulting y is the point of intersection of the 

closures of the Al{v). This is true because the MEDS algorithm actually makes use 

of the complements of the output sets in the optimization, finding the detection signal 

of smallest norm that does not satisfy the not proper conditions, as discussed in the 

previous chapter. The complements of the output sets are closed sets in L2, and the 

y that results from inserting the solution of the MEDS algorithm into (3.2) is on the 

shared boundary of these sets. Note that we could use either equation of (3.2) to 

compute y, but in the model reduction, part of (i0 is eliminated; all of Hi is available 

from the optimal solution. For the remainder of this discussion, let the common y be 

called y. 

Problems may result when the closures of the output sets intersect at more than 

one point at any given time. Non-unique intersections among convex sets can only 

occur when the sets have flat, parallel sides along their common border, i.e., both sets 

are not strictly convex. This geometry is present in cases where both A{ matrices share 

a common eigenvalue, eigenvector pair. While this occurrence is rare, since perturbing 

an element of a matrix almost always changes all of the eigenvalues of that matrix, 

software packages may fail in its presence (due to a non-unique optimal solution), 

and thus we should be prepared for it. To counteract its effect, we simply project y 

by multiplying both output equations by a matrix that eliminates the parallel part. 

This operation will result in lower dimensional output sets which have no flat, parallel 

sides. In the remainder of our discussion we will assume that such a projection has 
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been applied and the resulting lower dimensional output sets are strictly convex. 

3.1.2    The Separating Hyperplane 

A convenient feature of convex sets is the separating hyperplane [34]. Given two 

disjoint convex sets, there exists a hyperplane that separates the sets; that is, one set 

is above the hyperplane while the other set is below. Such a hyperplane exists for 

the two output sets Al(v), and it contains the point y. In fact, because the corners 

of the output sets are smoothed by the contribution of the noise "balls", and because 

we have assumed a unique y, the separating hyperplane for the output sets is tangent 

to both sets, and at any given time it is unique. By inserting a known output from 

one of the models into the equation of the hyperplane (defined by its normal and a 

point on the plane, in this case y), it can be determined whether that, set lies above 

or below the plane. By inserting an output, the origin of which is unknown, into 

the equation of the hyperplane, and subsequently observing the sign of the result, we 

can determine from which model that output originates, and thus accomplish model 

identification. 

Mathematically, the existence of the separating hyperplane implies that there is 

a function a(t) G L2 such that if we define 

<Kv) = (a,y-y)= I' a(t)T[y(t) - y(t)} dt (3.3) 
Jo 

we have that 0 is nonnegative on one Al{v) and nonpositive on the other AJ{v). The 

function a(t) is the normal to the separating hyperplane. We call <fi the test function. 

Numerical and system error can cause the output sets to overlap when v is applied. 

To compensate for this effect one would likely apply 5v with 5 a little more than one, 

resulting in output sets from the two models which are such a distance apart that 

their closures do not intersect. Thus, it will be important to have a test function that 

works for detection signals larger than v. 
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Recall from Section 2.1.1, the output equation for each model is 

y = ddiBiv) + CibiMißi) + Cie
Ai% + Km (3.4) 

where CiCi(Biv) is a vector depending linearly on v. Applying 8v translates Al{0) by 

8CiCi(Biv). Using 6 > 1 causes translation of A*{v) by (5 - l)d£iBiV. The vector y 

was on the boundary of Ai{v). Thus y + (5 - l)Ci£iBiV is now on the boundary of 

Ai(5v) and the two output sets are disjoint. As a result, the supporting hyperplane 

at either y + (5 - 1)C0C0BQV or y + {5 - \)CiCxBiV is still a separating hyperplane 

(not unique) and the normal is still a(t). Therefore, we may define the test function 

Mv) = r «(*)T(y(t) - i/W - (5 - ^^dt (3-5) 

where q(t) = TC0CQBQV + (1 - T)CICIBIV for a fixed 0 < r < 1. Note that choosing 

q this way with 0 < r < 1 makes the test strictly positive on one output set and 

strictly negative on the other, which is more computationally robust. In the examples 

of Chapter 4 we choose r = \. See Figure 3.1 for a finite dimensional depiction of 

this discussion. 

3.1.3    Approximating the Separating Hyperplane 

Unfortunately, no analytic characterization exists for the boundaries of the output 

sets at y. This characterization is required for direct computation of the tangent at 

the point of intersection. Thus, the equation of the separating (tangent) hyperplane 

is hard to compute. One way to compensate for the lack of a characterization of the 

output set boundaries at y is to artificially force the sets apart. Suppose we have done 

so, and let the points on the boundary of each set which are closest to each other be 

called yQ and y1: respectively. The equation of the line segment (y0 - yY) will be the 

normal to a separating hyperplane for the forced-apart sets. This normal, along with 

a point on the line segment, can be used to define the separating hyperplane. If the 
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output sets 
under larger v 

separating 
hyperplane 

new separating 
hyperplane 
(same normal) 

output sets 
under minimal v 

Figure 3.1: Output sets under application of v and Sv, 8 > 1 

sets have been separated correctly, this separating hyperplane will approximate the 

separating hyperplane for the original output sets. 

The accuracy of the approximation depends on how the sets are forced apart. 

One way to do it is to shrink the contribution of the noise vectors. Since the noise 

contribution to the output is a (possibly misshapen) "ball", multiplying the noise by 

a factor, e < 1, will force the output sets apart in such a way that the accuracy of 

the approximation can be made better by selection of a larger e. 

In fact, reducing the noise contribution is equivalent to increasing the detection 

signal. To see this fact, consider a generic model under the application of minimal 

energy detection signal, v, and reduced noise, e//. 

x'   =   Ax + Bv + Meß 

y     =     Cx + Neß. 

(3.6a) 

(3.6b) 
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Multiplying both equations by \, we obtain 

(D'-MiMD^ (3-7a) 

(|)   =   C(^)+Jv> (3.7b) 

Letting z = f, to = f and 6 = \, (3.7) becomes 

z'   -   Az + BSv + Mfi (3.8a) 

lü   -   Cz + Nfx (3.8b) 

which is just the original generic model under the application of larger than minimal 

detection signal, 5v, but with full noise contribution, \i. This equivalence is important 

in that it allows us to use the model identification test function (3.5) for the reduced 

noise problem as well as for the larger-than-minimum energy detection signal problem. 

In terms of the output sets, the equivalence may be stated as follows: if A\{v) is 

the output from model % using detection signal v and noise weighting e, so that 

A[(v) = A{(v), then A\(v) = eA'^v). 

3.1.4    Problem Statement 

The discussion of the preceding section leads us to a new form for the system models. 

x\   =   AiXi + BiV + MiefMi (3.9a) 

Vl   =   dxi + Nitm (3.9b) 

for i = 0 and 1. To find the separating hyperplane for the output sets, we must find 

the points on the boundaries of the closures of the sets that are closest to each other. 

In order to include the boundaries of the otherwise open output sets, we must change 



Chapter 3.   Model Identification via the Separating Hyperplane 75 

our bounded energy noise model to 

|rf<l,     « = 0,1. (3.10) 

To compute the normal to the separating hyperplane, simply minimize \\y0 — yi\\2 

subject to (3.9-3.10) using an optimal control package. SOCS is quite capable of 

handling this problem. The solutions y0 and y1 obtained can be differenced and 

normalized to compute the normal to the separating hyperplane. Any point on the 

line segment between y0 and yx may be used as the defining point on the hyperplane. 

See Figure 3.2 for a finite dimensional depiction of this discussion. 

approx 

Figure 3.2: Output sets under full and reduced noise contributions 

As stated earlier, the accuracy of the approximation obtained from this problem 

can be improved simply by selecting a larger e. A bound on the error is characterized 

in the next section. With the problem now fully defined, we present the model 

identification algorithm. 
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3.2    The Model Identification Algorithm 

As described in Chapter 2, Boeing's SOCS package [3, 4] efficiently solves the op- 

timization problem described above. MATLAB, by The MathWorks, Inc. [26] is 

convenient for subsequent computations. While we do not use MAPLE, by Water- 

loo Maple, Inc. [18] to generate FORTRAN code as for the MEDS algorithm, higher 

dimensional problems will make it desirable to do so. The model identification (MI) 

algorithm (with appropriate software in parentheses): 

1. Let v be the minimum energy proper detection signal from the MEDS algorithm 

(SOCS) 

2. Choose a value for e < 1 

3. Perform constrained optimization (SOCS) 

min||y0-rf (3.Ha) 

subject to the constraints 

x'i   =   AiXi + B^ + Miem (3.11b) 

Vi   =   dxi + NiefH (3.11c) 

q[   =   £ßi,   ft(0) = 0,   ft(t/)<l (3.11d) 

for i = 0 and 1 

4. Let y0 e and y1>£ be the closest points computed by the optimization 

5. Compute ae(t), the normal to the separating hyperplane (MATLAB) 

Vo,e -Vi,e 

\\yo,e - Vijl 
(3.12) 
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6. Compute ye(t), the point on the separating hyperplane, as the midpoint of the 

line segment connecting y0£ and yle (i.e., r = ^) (MATLAB) 

yt = —2— ^     ^ 

7. Let 0e(-2) = (ae,z — ye) be the test function. Then 

Myo) = (a€>yo-ye) >° 

4>e{Vl) = (ac,yi ~Ve)     <° 

or vice versa, where yi is an unknown output from model i, i — 0 or 1 

8. Suppose a known output from model 0 produces a positive test function value. 

Then if an unknown output produces a positive test function value, it derives 

from model 0. If the unknown output produces a negative test function value, 

it derives from model 1. If a zero test function value is produced, an error has 

occurred and a smaller value of e should be selected. 

Note that as e —> 1, the computed normal approaches the true normal. Unfortu- 

nately, numerical error in (3.12) increases when (1 - e) is very small due to division 

by small numbers. Thus, (1 - e) should be chosen sufficiently large to ensure a dis- 

crete distance between output sets, in order to reduce the effect of numerical error. 

However, (1 — e) must be small enough to ensure that the skewing effect from the 

weight matrices on the noise inputs are included, in order to increase the accuracy of 

the computed normal. 

The following theorem summarizes the accuracy of the computed test function 

[12]. 

THEOREM 3.1. Let ac(t) be the normal from, the MI algorithm, using 0 < e < 1 

and let y0e,y~ie be the values of y0,y\ that give the minimum distance.   Let yc = 
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k(Vo,e + !/i,e)- Let the hyperplane test be 

(ß€{w)=<at{t),w-y£> . (3.14) 

Let 6(e) = l|g°-'~gl-«11. Then there is a constant K so that 

6(e) < K{1 - e) (3.15) 

and if we {A°e(v) \JA]{v)), then 

tf,e(w) > 5{e)   =*   w e A°e(v) (3.16) 

<t>eM < -5(e)   =^   we A](v). (3.17) 

Proof (from [12]) (3.16) and (3.17) follow from noting that <f>e(w) = 6{e) is the 

supporting hyperplane of A°e(v) at y0e while <j)e(w) = -5(e) is a parallel supporting 

hyperplane of A](v) &ty1>e. K can be taken as ||C0£oMo + No|| + ||Ci£iMi + iVi||. D 

K is related to the linear operators applied to the noise vectors and is thus a 

measure of the amount of skewing that occurs in the output sets due to the noise 

input. In practice, the tests are often much better than the theorem indicates but 

the result allows for highly skewed convex sets. 

It is important to note that the MI algorithm can be used if the applied detection 

signal is larger than the minimal proper. If v is proper and not minimal, then one 

can set e = 1 in the algorithm and still obtain a nonzero distance between the output 

sets, due to the equivalence between the reduced noise and increased detection signal 

approaches. In fact, one can use a combination of both reduced noise input and 

increased detection signal, which is useful when it is not known whether the detection 

signal to be applied is minimal or not. This will be important when we discuss the 

case with multiple fault models. A sample driver file for the MI algorithm coded in 
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SOCS, along with a MATLAB m-file for subsequent computations are in Appendix 

A. 

3.3    Variations 

Like the MEDS algorithm, applications of the MI algorithm are limited by the as- 

sumptions and formulation of the problem. Fortunately, the assumptions and for- 

mulation of the model identification problem are much more conducive to extensions 

than the minimum energy detection signal problem. Extensions are easily made to 

multiple fault models, alternative formulations, pre-existing controls, alternative cost 

functions, and different initial conditions. 

3.3.1    Multiple fault models 

The result of the MEDS algorithm consists of a group of disjoint output sets, one for 

each possible model. Since we have no a priori knowledge of the spatial locations of 

these sets, the MI algorithm must be used to separate each pair of sets. If there are 

n possible models, then there will be ^""^ separating hyperplanes. Each output set 

will exhibit a unique combination of test function signs (positive/negative), for those 

test functions which can discriminate that output set. 

For example, take the case in which three models exist for the system, and let 

the output sets of the models be called Y0, Yi, and Y2. Let the hyperplane sepa- 

rating Y0 and Y1 be called H0i, separating Y0 and Y2 be called H02, and separat- 

ing Yi and Y2 be called Hx2. Finally, let the signs of the test function for output 

y be (sgn(Hoi), sgn(H02), sgn(Hu))y. Suppose the known output from Y0 exhibits 

(+,-,*), from Yi exhibits (-,*,+), and from Y2 exhibits (*,+,-), where * indi- 

cates the inability of that test function to discriminate the output set. Then, a valid 
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unknown output exhibiting any possible combination of test function signs will fall 

into one and only one of the output sets. Note that it is not possible for certain 

combinations of test function signs to be exhibited by a valid output, (+, +, +), for 

instance. 

It should be noted that the minimum energy detection signal for the multiple fault 

model problem may not be minimal for any of the pairwise problems. It will always 

be proper due to the construction of the combined problem, but it may be larger 

than required. In addition, it may not be apparent for which pairwise problem the 

detection signal is larger than minimal. While approaches such as that of [30] must 

use the minimal energy detection signal, the algorithm and test function described 

in this chapter can still be applied when the detection signal may not be minimal 

energy. 

Finally, if the goal is to detect a fault, but it is not important to distinguish be- 

tween fault models, the detection signal should be minimized by solving only those 

pairwise problems including the nominal model ( i.e., in the three model case, model 

0 versus model 1, and model 0 versus model 2). The nominal model will be distin- 

guishable from the fault models, but more than one separating hyperplane will be 

required. Outputs from the fault models may wrap around the nominal model, in 

which case a single hyperplane will not have the nominal model on one side and all 

fault models on the other side. Examples of the multiple fault model problem are 

included in the next chapter. 

3.3.2    Alternative Formulations 

Since the MI algorithm formulates the problem in terms of the original system ma- 

trices, and no reduction in system dimension is attempted, the problem is already 

in unreduced form. Thus, since parameters representing physical quantities are not 
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combined and sparsity is not lost, the question of whether or not to reduce the model 

is not an issue as it was in the MEDS algorithm. While alternative formulations 

are probably available, none could describe the problem as plainly, and in such a 

straightforward manner as the present formulation. 

3.3.3 Controlled Systems 

As was the case for the MEDS algorithm, the presence of a known control does 

not present any difficulty for the MI algorithm. The output of the MEDS algorithm 

combines the known control with the detection signal. This combined signal is merely 

a known input to the MI algorithm, and the fact that a control is present is transparent 

to the algorithm. Other types of controls as described in Chapter 2 arc equally as 

transparent. 

3.3.4 Alternative Cost Functions 

The issue of alternative cost functions arose in the MEDS algorithm because viable 

alternative costs exist for that problem. In the MI algorithm, the cost function is 

merely a means by which to compute the separating hyperplane via the two closest 

points on the closure of each output set. Thus it is the closest points which are of 

interest, and not the optimal cost. Therefore, the issue of alternative cost functions 

is not important at all to the model identification problem. 

3.3.5 Knowledge of Initial Conditions 

The variation of the noise model presented in the "Variations" section of Chapter 2 is 

as transparent to our MI algorithm as it is to the MEDS algorithm. The only change 

occurs in the boundary conditions for the differential equation. 
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Recall, however that variations on the initial conditions led Nikoukhah, et al. [30] 

in a different direction for computing v. While the separating hyperplane approach is 

also utilized in [30], the method for computing it is quite different. Instead of formu- 

lating an optimization problem, one of the Riccati equations solved while computing 

v is used along with a new BVP. The normal to the separating hyperplane is shown to 

be related to the Lagrange multiplier of the detection signal Riccati equation. Care 

must be taken to avoid introducing large errors into the solution via the integra- 

tion, but otherwise the computation of the normal is a simple BVP calculation. The 

shortcoming of the approach is that it must use v, and not a larger multiple. By its 

nature, the calculation uses the detection signal Riccati equation that produces v, so 

öv, where 5 > 1, is not available. The MI algorithm has already been shown to be 

robust to the use of larger multiples of v. 

3.3.6    Conclusion 

It is clear from the problem formulation, the algorithm description, and the above 

exploration of possible variations to the model identification problem that it is much 

simpler and more straight forward than the minimum energy detection signal problem. 

The question of flexibility, i.e., how easy it is to adapt the algorithm to a larger set 

of problems, is therefore quite easily answered: the MI algorithm can be adapted to 

handle any problem the MEDS algorithm can handle. As was stated in the previous 

chapter, while current theory for the multiple fault model case only provides for 

problem development, it does not provide a practical means with which to solve the 

problem. Our MEDS and MI algorithms not only provide theoretical development 

for the multiple fault model case, they also supply a simple method for solving such 

problems. 



Chapter 4 

Examples and Analysis of Results 

4.1    The Complete Problem and Algorithm 

Before beginning a discussion of the various examples to which the MEDS and MI 

algorithms have been applied, it is beneficial to review the complete problem and 

combined algorithm. Recall from Chapter 2, that the true model of the system is one 

of two models 

x'i   =   Ai%i + BiV + Mifii (4.1a) 

y   =   dxi + Nifii (4.1b) 

for i = 0 and 1. Our first goal is to apply the minimum energy detection signal, v, such 

that the (convex) output sets of the two models are disjoint. Thus, a given output 

may be derived from only one model. Our second goal is to compute the equation 

of the hyperplane which separates the two output sets. From this equation we define 

the test function. The substitution of known outputs from each model into the test 

function will indicate the sign (+/-) that each set will exhibit. The substitution of 

an output of unknown origin into the test function will result in a positive number 

if it is derived from one model and a negative number if it is derived from the other 

model. Thus the correct model for the system will be identified. 

83 



Chapter 4.   Examples and Analysis of Results 84 

These two goals are accomplished by the fault detection and model identification 

(FDMI) algorithm (the combination of the MEDS and the MI algorithms), repeated 

below (note: only the Version Two, non-Riccati form is repeated here, see Chapter 2 

for other developed forms) 

1. Perform QR decomposition on Nf 

Nj = QA (4.2) 

where the Qi are unitary matrices. Thus 

Ni = RjQj (4.3) 

2. Perform constant orthogonal coordinate changes on m 

(a) Let Rj = [Ni 0], where JVj is invertible 

(b) Let Qfßi = I      I with the same partitioning as Rj. Thus 
^i 

Nan = [Ni 0] | ^ | (4.4) 

(c) Let MiQi 
T = [Mi Mi] with the same partitioning as Rf. Thus 

-   ~   (ß\ 
MUH = MiQfQjfii = [Mi Mi]    J (4.5) 

Note the system model, (4.1), becomes 

x'i   =   AiXt + BiV + Milli + MijJii (4.6a) 

y   =   CiXi + Nißi (4.6b) 

3. Reduce model dimension by eliminating y and ~ß0 
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(a) Combine both equations (4.6b) for y, solve for fi0, and substitute into 

(4.6a), z = 0 

x'Q = {A0 - M0N~'c0)xo + Mo^dxi + B0v + M0ß0 + M0N^NiTh 

(4.7) 

(b) Let 

x=i   °],A 
Xi 

A0-M0N0
lC0   M0No

lCr 

0 A, 
, B 

B0 

M = 

r-l- 
M0   M0N0 Ni    0 

0 Mi        Mi 
, M MI 

Note the system model, (4.6), is now 

x' - Ax + Bv + Mji (4.8) 

4. Compute new system matrices 

-1~ T7-1 ^TT-lr 
(a) Let C = [N0 C0   - N0 d] and N = N0 [0 iVi  0], with the columns of 

N conforming to ß 

(b) Let H = -4ßCTN and Q = 2ßCTC 

(c) Let 

R = 2 

ßl 0 0 

0    {l-ß)I + ßNT
lN-TN~lNl 0 

0 0 (i-/5)/ 

with its rows and columns conforming to \i 
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(d) Compute A, B, M, H, Q, and R 

5. Perform constrained optimization. Solve 

(7*)~2 = min /    \\vfdt 
v>ß Jo 

(4.9a) 

subject to the constraints 

x'   =   Ax + Bv + Mfj, (4.9b) 

A'   =   -Qx - \Hn - ATX,   A(0) = \{tf) = 0 
4J 

(4.9c) 

Z'   =   \ [xTQx + xTE\x + nTRn] ,   Z(0) = 0,   Z(tf)>l (4.9d) 

0   =   Rfi + -HTx + MTX (4.9e) 

0.01 < ß < 0.99 (4.9f) 

6. Let v be the minimum energy proper detection signal 

7. Choose a value for e < 1 

8. Perform constrained optimization. Solve 

min II2/0 — 2/i||2 (4.10a) 

subject to the constraints 

x\   =   AiXi + Bid + Mi€(j,i (4.10b) 

Hi   =   CiXi + Nit^i (4.10c) 

q[   =   nJfii,   ft(0) = 0,   ft(t/)<l (4.10d) 

for ? = 0 and 1 

9. Let y0 e and y:   be the closest points computed by the optimization 
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10. Compute ae(t), the normal to the separating hyperplane 

ac = „!0|g "-''■■ (4.11) 

11. Compute ye(t), the point on the separating hyperplane, as the midpoint of the 

line segment connecting y0e and yle (i.e., r = |) 

= y0,e + yi,e (412) 

12. Let 0£(^) = {ae,z - y£) be the test function. Then 

<t>e{yo) = (o-€,yo-Vc)   >0 

<l>e{yi) = (a€,yi-ye)  <o 

or vice versa, where y* is an unknown output from model i, i = 0 or 1 

13. Suppose a known output from model 0 produces a positive test function value. 

Then if an unknown output produces a positive test function value, it derives 

from model 0. If the unknown output produces a negative test function value, 

it derives from model 1. If a zero test function value is produced, an error has 

occurred and a smaller value of e should be selected. 

4.2    Introduction of Software 

As alluded to in previous chapters, Boeing's Sparse Optimal Control Software (SOCS) 

is the main software in which the optimal control problems of the FDMI algorithm 

have been coded for this thesis. System matrices are first reduced using MATLAB. 

The reduced system matrices from MATLAB are inserted into the appropriate FOR- 

TRAN subroutines.   The dimensions of the reduced model's matrices are fed into 
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MAPLE for the construction of the constraint equations. MAPLE's FORTRAN 

translator is used to convert these equations into FORTRAN code which are then 

pasted into FORTRAN subroutines for compilation and execution. MAPLE is used 

to compute the constraint equations symbolically, so that the problems may by kept 

in parameterized form. MATLAB is used to analyze and plot the output from the 

SOCS routines 

4.2.1    SOCS Parameters 

In addition to the specific parameters for a given problem, SOCS allows the user to set 

various general parameters which control the optimization method and convergence 

tolerances. In Chapter 1, we described several discretization methods implemented by 

SOCS. By setting two control parameters we have selected the Compressed Hermite- 

Simpson discretization method for all examples. While it is possible to substitute 

another method to solve the resulting finite dimensional problem, we have not done so, 

but instead have used the default SQP method supplied in SOCS. This combination 

of discretization method and nonlinear program solver exhibits good convergence 

properties and efficient use of central processor unit (CPU) time and is well suited 

to the types of differential equations, and I? and algebraic constraints present in our 

problem set. Options that control the operation and convergence of the optimization 

program are: 

• Sparsity - If set to "sparse," the program takes advantage of sparsity in 

user supplied constraints. Our constraints are sparse, so this option is 

used. 

• Initial guess type - The user has several options available to supply an 

initial guess for the optimization program. Choices range from a linear 

interpolation between endpoint values, to construction of an initial guess 
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from a user-supplied B-spline definition or explicit calculation at each of 

the initial mesh points. All of our examples use the linear interpolation 

option. While this often results in an infeasible initial guess, in every 

case the program rectifies this condition after a few constraint satisfaction 

iterations. 

• Initial mesh size - The user sets the size of the initial mesh. To reduce 

unnecessary computation, the initial mesh should be the coarsest possible 

that allows the program to attain constraint satisfaction after a few iter- 

ations. If the initial guess is already feasible, the initial mesh size should 

be left at the default value of 10. Several of our examples require a finer 

initial mesh than the default in order to attain constraint satisfaction. 

• Discretization order and stage number - When set to the appropriate 

values, the program uses a high order discretization method and stage 

number for mesh refinement. While not used in our examples, this option 

may be useful in higher dimensional problems. 

• Tolerances - The user may set tolerances for the relative error in the 

objective function and the differential equation constraints, as well as 

various absolute errors. These tolerances may be set to different values for 

the two different phases of the optimization (discretization and nonlinear 

program solver). Several of our tolerances are set tighter than default 

values to obtain more accurate solutions, resulting in modest increases in 

CPU times. 

Samples and discussions of the MATLAB, MAPLE, and SOCS routines used to gen- 

erate the results of this chapter are depicted in Appendix A. 
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4.2.2    Choosing a Value of e 

In the previous chapter, we mentioned that difficulty may arise in choosing the value 

of the noise multiplier, e, in the model identification part of the algorithm. There we 

noted that as e -» 1, the computed normal to the separating hyperplane approaches 

the true normal, but numerical error increases also. We concluded that (1 - e) should 

be chosen sufficiently large to ensure a discrete distance between output sets, in 

order to reduce the effect of numerical error. However, (1 - e) must be small enough 

to ensure that the skewing effect from the weight matrices on the noise inputs are 

included, in order to increase the accuracy of the computed normal. 

To test the effect of different values of e on the accuracy of the computed normal, 

we ran several different models with different values of e. We found that the normal 

is not very sensitive to the value of e as long as e is not too small. To ensure a discrete 

distance between output sets without reducing the skewing effect of the coefficient 

matrices on the noise vectors, we chose e = 0.7 for all examples. A sample plot of the 

computed normal of one example problem for e = 0.3,0.5,0.7,0.9 is shown in Figure 

4.1. 

4.3    Introduction of Examples 

To test the operation of the algorithm, as well as to examine how results vary with 

the problem, we have applied the FDMI method to fourteen examples. Four of these 

examples are one-dimensional problems, and are examined to shed light on the per- 

formance of the algorithm on stable-to-stable and stable-to-unstable fault situations. 

One of these examples is coded in all four formulations of the algorithm in order to 

compare the relative computational performance of the different formulations. Seven 

examples are two-dimensional problems, and are examined to shed light on several 
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Figure 4.1: Typical variation of o,€(t) with e 
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phenomena of interest. These phenomena include: 

• v, 7*, ye and ae(t), and how each varies with the problem and the interval 

length, 

• how results differ between stable-to-stable and stable-to-unstable oscilla- 

tory systems (i.e., with imaginary or complex eigenmodes), 

• whether the algorithm will work for systems with common modes (i.e., 

unobservable systems). 

Another example is three-dimensional, a real world control system; it is examined 

to determine the efficiency of the algorithm for larger scale systems. The last two 

examples are each systems with a nominal model and two fault models. One of these 

is one-dimensional and the other is two-dimensional. These examples are included to 

demonstrate how the algorithm handles multiple fault model systems. Overall, the 

example suite provides the basis for a comprehensive analysis of the FDMI algorithm, 

its strengths, as well as a few of its weaknesses. 

4.4    One-Dimensional State Examples 

To begin our analysis, we look at four one-dimensional examples. The very first 

example is coded in all four formulations of the algorithm. This is done both to 

confirm results between formulations and to attempt to determine if one formulation 

is more efficient than the others. The remaining examples shed light on the shape 

and energy of the minimum energy detection signal, v, as well as the shapes of the 

normal to the separating hyperplane, ae(t), the midpoint of the shortest line segment 

between the output sets, y£(t), and the separability index, 7*, for one-dimensional 

problems. 
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4.4.1    Primary One-Dimensional Example 

We begin with the simplest problem for which all terms appear. 

EXAMPLE 4.1. [Change of eigenvalue, stable-to-stable] This problem, corresponds 

to the case where there has been an internal change in some system parameter such 

as friction in a joint or resistance of a resistor. 

x0   — 

V   = 

y = 

-2x0 + v + fi2 

-Xi +v + flA 

Xi + /i3. 

(4.13a) 

(4.13b) 

(4.13c) 

(4.13d) 

This problem, as well as each subsequent example, is formulated such that the 

constant change of coordinates described in the algorithm is unnecessary. Model 

reduction is much more straightforward with this formulation, but no generality is 

lost in the process. Figures 4.2-4.3 depict v for tj - 1,10, 20,100 respectively. Figure 

4.4 shows v for tj = 20,100 plotted to the same scale. 

01 02        03        04 05 OS        07        08        09 I 

Figure 4.2: v, for Example 4.1: tf = 1 (left), tj = 10 (right) 
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10 20 30 40 50 60 70 80 90 100 

Figure 4.3: v for Example 4.1: tf = 20 (left), tf = 100 (right) 

10 20 30 40 SO 60 70 BO 90 100 

Figure 4.4: v for Example 4.1: tf = 20,100 
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Figure 4.5 shows the relationship between 7* and the interval length. Table 4.1 

compares 7* and v for various interval lengths. 

10 20 30 tO 50 60 70 80 90        100 

Figure 4.5: 7* for Example 4.1 as a function of tj 

Table 4.1: 7* and ||u|| for Example 4.1: tf = 1,10, 20,100 

*/ 7* V 

1 0.02075 48.1919 

10 0.18719 5.3423 

20 0.19498 5.1288 

100 0.19736 5.0669 

As the plots and the table show, the energy of v decreases as the interval length 

increases. However, once a threshold interval length is reached, no significant de- 

crease in the energy of v, or increase in 7* occurs. It should be noted that as the 

interval length decreases, 7* becomes very small, indicating the difficulty involved in 

distinguishing between the two models on very short intervals. Since ||u|| is equal to 

the reciprocal of 7*, the energy of the detection signal will be extremely large on very 

short intervals. The threshold for Example 4.1 appears to be near tj — 15, so that in 
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the case where tf = 1 the energy of v is quite significant. 

As to the shape of v on different intervals, Figure 4.6 compares v for the different 

intervals after rescaling in both magnitude and duration. The innermost line is v for 

tf = 1, continuing outward so that the outermost line is v for tf = 100. It is clear 

that v is not the same function on different intervals. In [29] it was observed that 

v for the discrete problem begins to resemble the product of sine functions as the 

interval lengthens. Figure 4.6 also demonstrates this resemblance, though in a more 

approximate sense than was demonstrated in [29]. 

' 0 0.1 0.2        0.3        0.4        0.5        0.6        0.7 0.8 0. 

Figure 4.6: Rescaled v for Example 4.1: tf = 1,10, 20,100 

Figure 4.7 gives the ye(t) and a£(t) for various values of e. For Example 4.1, the 

noise input is not skewed at all by its coefficient matrix, so we would expect the 

separating hyperplane to be insensitive to the value of e. Figure 4.7 clearly shows 

that ye(t) and ae(t) do not vary significantly across the full spectrum of possible values 

of e for this problem. 
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01 02 03 04 05 06 07 

Figure 4.7: ye(t) and ac(t) for Example 4.1: e = 0.3,0.5,0.7,0.9 

As mentioned previously, Example 4.1 is coded in all four formulations of the 

FDMI algorithm. The results discussed above are from the Version One, non-Riccati 

form of the algorithm, but thorough comparisons have shown that the results are 

equivalent from all four forms. Table 4.2 summarizes the performance of all four 

formulations: Version One, non-Riccati (InR) and Riccati (1R), and Version Two, 

non-Riccati (2nR) and Riccati (2R). Each was run on the intervals [0,1], [0,10], and 

[0, 20] for a total of twelve runs. Ten of the runs use an initial mesh size of 50. For 

tf = 1, the 2R formulation would not converge using this initial mesh size, as was also 

the case for tf = 20 in the InR formulation. Both converged using an initial mesh size 

of 11, so that value was substituted. Those entries in the table are in boldface type. 

Non-convergence of the SOCS program occurs occasionally and is usually clue to the 

combination of infeasible initial conditions and a failure to resolve system dynamics 

on a specific mesh. In addition, a few of the problems produced early program termi- 

nations due to the magnitude of the objective function. With an objective function 

on the order of 10~4, the change in objective function values between iterations is 

commonly on the order of 10~6. The default SOCS objective function error tolerance 

is 10-5, and thus productive reductions in the objective function may be lost due to 
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program termination before they occur. To counteract this effect, the objective func- 

tion for those problems exhibiting this phenomenum is rescaled by 106. The scaling 

factor was removed before the data was tabulated. Later, we refer to this rescaling 

of the objective function as conditioning. 

Table 4.2: Formulation comparison of Example 4.1: £/ = 1,10,20 

*/ = l t.f = io t, = 20 
Form CPU Time Iterations CPU Time Iterations CPU Time Iterations 

InR 
2nR 
IR 
2R 

61.55 
181.56 
72.89 

138.17 

3 
4 
4 
6 

96.16 
67.54 

68.6 
67.9 

3 
3 
3 
3 

67.04 
290.94 
130.14 
125.34 

6 
4 
4 
4 

As the table indicates, results were not consistently better for any formulation. 

While formulation InR is as good as, or better than the others in four of the six 

columns, it is worse by 50% in the other two columns. Since there is no clear winner, 

and since it is also not our intent to recommend one formulation over any other, 

we chose to run the remaining models in formulations InR or 2nR. These formula- 

tions provide a more direct correlation with the original problem parameters and are 

simpler to encode. In addition, neither form requires Riccati equations. The direct 

transcription approach taken by SOCS converts every problem into a boundary value 

problem, even those in Riccati form. This translation removes all of the usual ad- 

vantages of the Riccati approach. Formulation 2nR provides excellent compatibility 

between the minimum energy detection signal and model identification parts of the 

algorithm, while some rescaling of results is required in formulation InR. For this 

reason, our higher dimensional examples are coded only in formulation 2nR. The 

formulation used is transparent to the results presented below. 
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4.4.2     Other One-Dimensional Examples 

The remaining one-dimensional problems are similar to Example 4.1. Plots of v 

for each problem, as well as comparisons to Example 4.1 follow the last problem 

definition. 

EXAMPLE 4.2. [Change of eigenvalue, stable-to-unstable] This is also a simple 

problem corresponding to a change in a system parameter, but here the fa,ult m,odel is 

unstable. 

A = -xo + v + na (4.14a) 

y = zo + ^i (4.14b) 

x[ = -Xi + v + fJLi (4.14c) 

y = zi+^3- (4.14d) 

EXAMPLE 4.3. [Severe change of eigenvalue, stable-to-stable] Tins problem is 

similar to Example J^.l, but the parameter change is more severe, indicating stiff 

dynamics. 

x'0 = -X0 + V + /J.2 (4.15a) 

y = xo + fi! (4.15b) 

x\ = -30a;i +v + /%i (4.15c) 

y = xi+Hz- (4.15d) 

EXAMPLE 4.4. [Severe change of eigenvalue, stable-to-unstable] This problem is 

similar to Example 4-2, but the unstable mode's parameter change is severe, indicating 
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highly unstable dynamics. 

x'o = -x0 + v + fi2 (4.16a) 

y = x0 + ^ (4.16b) 

x[ = SOxi + v + Hi (4.16c) 

y = X!+n3. (4.16d) 

Figure 4.8 gives v for Examples 4.2 -4.4 for tf = 1. Table 4.3 compares the 

separability indices and the energy of v for Examples 4.1-4.4 on the intervals [0,1] 

and [0,10]. As the plots show, the shape of v is similar for all of the one-dimensional 

problems in the set. Example 4.2 admits a lower energy minimum proper detection 

signal than Example 4.1 on the same interval. This is as expected since the two models 

of Example 4.2 have more contrasting dynamics than in Example 4.1. Examples 4.3 

and 4.4 exhibit even sharper changes in dynamics, and the much lower energy v for 

each of those problems on the shorter interval bears witness to that fact. 

As the interval lengthens, however, the differences narrow. On [0,10], Example 4.1 

still requires significantly more energy in v than the other examples. The unstable 

mode of Example 4.2 and the large changes in dynamics of Examples 4.3-4.4 still 

allow for easier separation of the models of these problems. The differences between 

the last three examples, however, are much smaller than on the [0,1] interval. In fact, 

Example 4.2 now requires less energy than the other two examples. This indicates 

the expected result: problems with more distinct models are not as sensitive to the 

test period length as those with similar models. Obviously, extremely short intervals 

will present difficulties for all problems, but problems with distinct models will be 

less sensitive on those intervals, i.e., they will produce a larger 7* and will thus be 

easier to separate than problems with more similar models. 

Figure 4.9 shows all of the v curves on the same plot, each rescaled to a maximum 
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Figure 4.8: v for Examples 4.2 (left), 4.3 (center), 4.4 (right): ts = 1 

Table 4.3: 7* and ||v|| for Examples 4.1-4.4: tf = 1,10 

tf = l */ = io 
Example 7* V 7* V 

4.1 0.02075 48.1919 0.18719 5.3423 
4.2 0.03261 30.6690 0.69849 1.4317 
4.3 0.13418 7.4524 0.38687 2.5848 
4.4 0.14344 6.9717 0.41355 2.4181 
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height of one. It is interesting to look at this combined v plot. With tf = 1 the v of 

Examples 4.1 and 4.2 are superimposed on each other, as are the v of Examples 4.3 

and 4.4. A mathematical examination reveals a maximum difference of about 0.0.03 

between the v of Examples 4.1 and 4.2. On a longer time interval, the two v are 

still very similar but there is a more visible difference. The fact that the two v are 

so similar suggests that for some classes of problems one could use the same v for a 

number of different fault models, changing only the gain to ensure that it is proper. 

i2        0.3        0.4 0.5 0.6 0.7 OB 0.9 1 

Figure 4.9: v for Examples 4.1-4.4: £/ = 1 

Figure 4.10 gives ye(t) and ae(t) for Example 4.4 for various values of e. As we 

saw in previous plots of the parameters of the separating hyperplane, they are quite 

insensitive to the value of e. In fact, for this problem, the plots for the different values 

of e are superimposed on each other. The insensitivity of the parameters to the value 

of e is encouraging in that it allows some assurance of computing a valid test function 

for virtually every possible output from competing models of the problem. 

It should be noted that each ae(t) computed by the algorithm has been checked 

against those functions to which it should be orthogonal.   That is, for the output 
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Figure 4.10: y((t) and ae(t) for Example 4.4: e = 0.3,0.5,0.7,0.9 

given by 

V = CiCi(Biv) + CiCiiMiin) + deAi% + Nun (4.17) 

the normal to the separating hyperplane should be orthogonal to deAit£i. The inner 

products of the computed normal and CieAii^i were within 10-6 of zero for each value 

of e in every example. 

4.5    Two-Dimensional State Examples 

We continue our analysis by examining seven two-dimensional examples. Six of these 

examples exhibit properties that help to shed light on the shape and energy of the 

minimum energy detection signal, v, as well as the shapes of the normal to the 

separating hyperplane, ae(t), the midpoint of the shortest line segment between the 

output sets, ye(t), and the separability index, 7*, for two-dimensional problems. The 

first of these six was run on seven different interval lengths in order to examine the 

oscillatory properties of v. The seventh example is constructed to be unobservable in 

order to test the algorithm's capability to handle such problems. 
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4.5.1    Primary Two-Dimensional Example 

In Example 4.5 we find a problem for which the shape of v varies considerably with 

the interval length. 

EXAMPLE 4.5. [Change of eigenvalues, neutral stability] This problem has purely 

imaginary eigenvalues. The only difference between models is a change in eigenvalues 

from ±3i to ±2i. 

(4.18a) 

(4.18b) 

(4.18c) 

(4.18d) 

(4.18e) 

(4.18f) 

Figure 4.11 shows vfortf = l, 20. Figure 4.12 shows v for tf = 1, 2,4,6,8,10,20. 

In the tf = 1 case, v resembles the detection signal in the one-dimensional cases 

studied, but at longer intervals we get a very different v. Oscillations are introduced, 

and the number and period of the oscillations depend on the interval length. It should 

be noted that the plots in Figure 4.12 are actually 7*^, i.e., they were computed 

in formulation InR but not rescaled by the reciprocal of the separability index as 

required in that formulation (see Chapter 2). Not performing the rescaling allows 

for a meaningful comparison of the various shapes of v, but does not allow for a 

comparison of ||u|| between intervals. If the plots were rescaled by ^r, the tf = 1,2 

cases would dwarf all others in magnitude, and the curve shape comparison would be 

impossible. 

Table 4.4 shows \\v\\ and other quantities of interest for Example 4.5 on each 

XQ =     ZQ + ^3 

4 =     -9X0 + V + fl2 

y -    ^0 + ^1 

x[ =     Z\ + fJ-6 

A =    -4a;i + V + fjL5 

y =     X\ + ^4- 
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Figure 4.11: v for Example 4.5: tf = 1 (left) and tj = 20 (right) 

0 12 3 

Figure 4.12: v for Example 4.5: */ = 1,2,4,6, 8,10, 20 
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interval tested. We used an initial mesh size of 50 for all but the tf — 10 case. 

That case required an initial mesh of 20 in order to attain feasibility. This resulted 

in more iterations before convergence, but still gave CPU time comparable to the 

first four cases. As always, CPU times should only be used as rough indicators since 

they often vary greatly. As an example, note that the CPU time for the tf = 8 

case is an unexplainable outlier. For the tf = 12,14,16,18 cases we used default 

tolerances which are looser than the tolerances used in all other cases. This was done 

to demonstrate the efficiency of the software under default conditions. Note the CPU 

times for these cases are considerably lower than the other cases and the number of 

iterations have not increased. Aside from the difference in tolerances and the natural 

variation often present, the presence of inconsistent CPU times may indicate the need 

to optimize either the conditioning on the objective function or the initial mesh size 

for each interval. 

Also note the steady decrease of ß as the interval lengthens. This effect is probably 

due to the difference in dynamics between models becoming more significant as the 

detection interval lengthens. 

Finally, notice that 7* is extremely small on the shorter intervals. As the interval 

lengthens, however, 7* grows to be larger than that for the one-dimensional Example 

4.1. Thus, Example 4.5 requires a higher energy v than Example 4.1 on the shorter 

intervals, but a lower energy v on longer intervals. Figure 4.13 depicts the relationship 

of 7* to the interval length for this example, and a comparison to 7* from Example 

4.1. 

Figure 4.14 gives y€(t) and ae(t) for Example 4.5, for various values of e, and 

for a typical interval length, tf = 6. Contrary to what we saw in previous plots 

of the parameters of the separating hyperplane, these plots depict some sensitivity 

to the value of e. This sensitivity indicates that one should not blindly choose a 

value of e for a given problem without first determining whether the value of e is 
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Table 4.4: Performance comparison of Example 4.5 on various time intervals 

tf 7* ß CPU Time Iterations 

1 0.72694 *10~3 0.500104 850.94 3 
2 0.14710* 10"1 0.501659 388.05 3 
4 0.91764 *10-x 0.502983 867.55 5 
6 0.18093 0.463663 960.15 4 
8 0.23532 0.469403 4580.01 5 
10 0.27321 0.404642 836.74 9 
12 0.29050 0.351149 264.08 5 
14 0.30296 0.315157 267.95 5 
16 0.31787 0.293182 259.66 5 
18 0.32954 0.262228 330.09 5 
20 0.33806 0.240156 9464.59 6 

30 35 40 

Figure 4.13: 7* for Example 4.5 as a function oft/ (left), 
compared with Example 4.1 (right) 
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a factor. For this problem, and most likely many others, the value of e affects the 

accuracy of the approximation to the true separating hyperplane, and thus should be 

chosen to minimize the error while ensuring a positive separation between output sets. 

Fortunately, tests thus far indicate that the calculations are reasonably robust and 

parameters are usually not highly sensitive to the value of e. In addition, ae(t) varies 

smoothly with e, and thus one can guarantee high quality results by experimenting 

with e values. Ultimately, if perfect model identification is required, one should apply 

8v with 6 > 1 and use e = 1 in the MI algorithm. Additional energy in v is a small 

price to pay to guarantee that a(t) is accurate to within machine precision. 

f          \ 

. 

^^& 

■■•• 0.3 
--0.5 

■-■ 0.7 

,                , <                  ' — 0.9 

Figure 4.14: ye(t) and ae(t) for Example 4.5: e = 0.3,0.5,0.7,0.9 

4.5.2     Other Two-Dimensional Examples 

The remaining two-dimensional examples, while exhibiting various dynamical and 

weighting properties, all possess similar v and ae(t) qualities. Thus, they will be 

treated together. 



x0 = Zo + 5/t3 

4 = -9x0 + v + 4//2 

y = X0 + //i 

x\ = z\ + fie 

A = -4.Ti + V + fi5 

y = xi + m. 
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EXAMPLE 4.6. [Change of eigenvalues, neutral stability] This problem has the 

same change in eigenvalues from ±3i to ±2i as Example 4-5- It also has different 

weighting on the noise matrix, Mo- 

(4.19a) 

(4.19b) 

(4.19c) 

(4.19d) 

(4.19e) 

(4.19f) 

EXAMPLE 4.7. [Change of eigenvalues, neutral-to-unstable] This problem has 

eigenvalues which change from purely imaginary, ±3i, to complex unstable, ^ ± 3i. 

x'o = z0 + ß3 (4.20a) 

4 = -9x0 + v + ß2 (4.20b) 

y = xo + fii (4.20c) 

x[ = Zi + ne (4.20d) 

z[ = -g.Olxi + -zx + v + ß5 (4.20e) 

y = Xl+IM- (4.20f) 
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EXAMPLE 4.8. [Change of eigenvalues, neutral-to-stable] This problem has eigen- 

values which change from purely imaginary, ±3i, to complex stable, — ^ ± 3i. 

x'0   =   zo + ßs (4.21a) 

z'Q   =   -9x0 + v + u.2 (4.21b) 

y   =   xo + ^i (4-21c) 

xx 

z' 

zx + Me (4.21d) 

1   -   -9.01xi--Z! + v +& (4.21e) 

y  =  ^i + ^4. (4.2lf) 

EXAMPLE 4.9. /]Vo change of eigenvalues, neutral stability] This problem has no 

change in dynamics. Both models have eigenvalues of ±3i. The difference between 

models is a change in weighting of the noise matrix, Mi, and the output matrix, C\. 

x'0   =   z0 + ß3 (4.22a) 

(4.22b) 

(4.22c) 

(4.22d) 

(4.22e) 

(4.22f) 

4 = -9x0 + v + \±2 

y = XQ +/ii 

x\ = z\ + 2/i6 

A = —9a;i + v + 3//5 

y = 5xi + /i4. 
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EXAMPLE 4.10. [Change of eigenvalues, stable-to-stable] This problem has eigen- 

values which change from complex stable, — 1 ± 3i, to complex stable, —2 ± 2i. 

z'o = -xo + z0 + Hz (4.23a) 

4 = -9a;o - zo + v + [ii (4.23b) 

y = x0 + /ii (4.23c) 

x[ = -2xi + z\ + He (4.23d) 

z[ = -4.Ti - 2zi + v + ß5 (4.23e) 

y = X!+/x4. (4.23f) 

On the left side of Figure 4.15 is v on the interval [0,1] for Examples 4.5-4.10. 

Some scaling problems exist among the examples on this interval, so this plot is left 

unrescaled as before. Note that, for the first time thus far, we have some oscillations 

in v on our shortest interval. This indicates that, for those problems which exhibit 

the oscillation, [0,1] is a long interval relative to their dynamics. This result is not 

surprising, as we would expect the dynamics of the problem to influence the affect of 

a given test period length on the detection signal. 

The right side of Figure 4.15 shows the same information on the interval [0,10]. 

Here, the scaling problem is not as severe, so each v has been rescaled by -^. Note 

that one problem, Example 4.9, exhibits a single-lobed v, in contrast to all other two- 

dimensional problems so far on this interval. Recall that this example has no change 

in dynamics between models, but only various different weight matrices. Thus we 

should expect for this type of problem that v merely has to contain enough energy to 

drive the output sets apart without requiring any complex wave form, as in the one- 

dimensional problems examined previously. Figure 4.16 gives all examples exhibiting 

a simple v for the case t; — 10. These plots are all scaled properly, and the highest 
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energy plot is that of Example 4.9. 

As we mentioned in the previous section, [29] observed that the v seem to lie in 

a region bounded by half of a period of the sine function. Figure 4.17 shows this 

by plotting the same information as Figure 4.15 (right), with each curve normalized 

in energy. It is quite apparent that all oscillations of the various v do occur in an 

envelope that resembles the sine function. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

AA      1A - 

• ^ 11 \ \ m\ 
—l—Mü_ 

rf^/v/~ 

\\ /  1 w 1 \l T4.6 / \  / 

^        1    V    /     1 ^ 

1   / vA-4-to 
/ <-4.7,4.8 - 

12 3 4 5 7 8 9 10 

Figure 4.15: v for Examples 4.5-4.10: tf = 1 (left), tf = 10 (right) 

Table 4.5 compares various quantities from Examples 4.2-4.4 and 4.5-4.10 for 

tf = 1, while Table 4.6 does the same for tf = 10. Again, an initial mesh of 50 

was used for all examples, except Examples 4.2, 4.5, 4.9, and 4.10 on [0,10] used an 

initial grid of 20 for the feasibility reasons mentioned above. It is clear from Table 

4.5 that the one-dimensional examples, along with the two-dimensional example with 

unchanging dynamics, possess higher separability indices than the two-dimensional 

examples with changing dynamics, and thus admit a lower energy v. This difference 
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9 10 

Figure 4.16: v for Examples 4.2,4.3,4.4,4.9: tf = 10 

0.6 

0.4- 

-0.2 

-0.8 

 1 1 r-       i            !            ! 

A[  \^—ft—H—%-if-9 / V-47,4.8 

V-46 

/     T4.10 

\ 1Ä! //   1V w '//<-4.5 - 
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0 12 3 4 5 6 7 

Figure 4.17: Normalized v for Examples 4.5-4.10: tj = 10 
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is somewhat clouded as the interval lengthens to 10, indicating that, on longer inter- 

vals, the energy required in v becomes more dependent on system dynamics than on 

problem dimension or simplicity. 

Table 4.5: Performance comparison of Examples 4.2-4.10: tf = 1 

Example 7* ß CPU Time Iterations 

4.2 0.32606 * 10"1 0.499823 38.69 2 
4.3 0.13418 0.509624 310.90 4 
4.4 0.14344 0.509624 234.53 4 
4.5 0.72694 *10-3 0.500104 850.94 3 
4.6 0.69719 *10~3 0.520423 829.42 3 
4.7 0.13485 *10~3 0.499998 1535.48 3 
4.8 0.13485 *10~3 0.499998 533.84 3 
4.9 0.64642 * 10-1 0.314308 795.85 3 

4.10 0.12853* 10-2 0.500149 870.98 3 

Table 4.6: Performance comparison of Examples 4.2-4.10: tf = 10 

Example 7* ß CPU Time Iterations 

4.2 0.69849 0.418685 31.37 4 
4.3 0.38687 0.579995 838.09 7 
4.4 0.41355 0.579995 1281.74 8 
4.5 0.27321 0.404642 836.74 9 
4.6 0.17170 0.529625 8490.14 5 
4.7 0.29614 *10"1 0.504179 7165.95 8 
4.8 0.29614 *10-1 0.504179 2657.45 5 
4.9 0.14981 0.335714 2971.26 6 

4.10 0.38458 * IQ"1 0.514021 469.30 7 

Figure 4.18 gives a typical y£(t) and at(t) for these examples. 
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Figure 4.18: ye(t) and ac(t) for Example 4.10: e = 0.7 

4.5.3    Common Mode Two-Dimensional Example 

For our last two-dimensional example we present a problem in which the two models 

share a common eigenvalue, eigenvector pair. 

EXAMPLE 4.11. [Shared eigenvalue, unsta,ble-to-unstable] This problem has a 

change in its first eigenvalue from 2 to 3. The other eigenvalue does not change 

between models. It remains at 1. 

Xc\ 

X, 

1   0 
Xo + 

2   1 
v + 

0   0   0   1 

0   2 1   2 0   0   10 

1   0 
Xo + 

0   1 0   0 
Mo 

0   1 1   0 0   0 

1   0 
Xi + 

2   1 
v + 

0   0   0   1 

0   3 1   2 0   0   10 

1   0 
X\ + 

0   1 0   0 
Ml- 

0   1 1   0 0   0 

Mo 

fj-l 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

Both models of this example are controllable and observable.   To sec this fact, 



Chapter 4.   Examples and Analysis of Results 116 

recall from Chapter 1 that a second-order system is controllable if and only if [si - 

A | B] has rank 2 for all values of s. The same system is observable if and only if 

[si - AT | CT] has rank 2 for all values of s [6]. Clearly, both models of Example 4.11 

are controllable since B0 and Bi are full rank by themselves. Both models are also 

observable since the same holds for Cj and Cj. However, the fact that there exist x0 

and xi subspaces on which the dynamics and the outputs are the same is equivalent 

to saying that the combined system is not observable. These subspaces exist because 

e'&A 
x = 

0 
(4.25) 

/ 

is a solution of the free response for both of them. Thus each output set has a parallel 

side in the long direction. 

In terms of the FDMI algorithm, as it attempts to separate the output sets in the 

detection signal phase, the last points to touch will be those on the parallel side. Many 

states and outputs will be eligible to be part of the optimal solution, and because of 

this nonuniqueness, the algorithm may be unable to choose one. Simply stated, the 

two models may not be different enough for the algorithm to find a unique minimal v. 

Even if it is possible to choose an optimal solution from the equivalent candidates in 

the detection signal phase, the model identification phase also separates the output 

sets. As the algorithm searches for the closest points on the closure of each set, it will 

again find many eligible points on each parallel side, and may be unable to choose. 

In fact, this problem does occur in Example 4.11. As mesh refinements are made 

and the dynamics are resolved to near-tolerance accuracy, the algorithm terminates 

with a warning about degenerate constraints and SQP errors. (When the problem is 

modified to remove the parallel sides, all errors disappear and the problem converges 

to any desired tolerance.) Despite the errors, the dynamics are resolved quite accu- 

rately, down to the 1CT6 level. In addition, the algorithm is converging to a solution 
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before the errors occur. So it appears that the algorithm is able to handle this type 

of problem despite the lack of uniqueness of the optimal solution. Figures 4.19 and 

4.20 give v, ye(t), and ae(t) for this problem on the interval [0,5]. 

05 1 15 ? ?5 3 35 

Figure 4.19: Components of v for Example 4.11: tf = 5 

Figure 4.20: Components of yc(t) and ac(t) for Example 4.11: e = 0.7 

If the FDMI algorithm is not able to solve a given problem with common eigen- 

value, eigenvector pairs between models, we have the option of truncating the outputs. 

That is, we multiply outputs from both models by the same matrix, annihilating the 
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identical part, and solve the resulting lower dimensional problem as before. Testing 

of this procedure will be left to future research. 

4.6    Industrial Example 

We now turn to a real world example in order to test the performance of the FDMI 

algorithm on larger scale problems. The problem is the equalized and linearized model 

of a single-engine F-16 aircraft [39]. The model has a three-dimensional state, and 

the dynamics include a reference control input. 

EXAMPLE 4.12. [Change of eigenvalues, stable-to-unstable] The nominal model 

of this problem has one stable real eigenvalue, and two stable complex eigenvalues. 

The fault model has three unstable real eigenvalues. 

Xr,   — 

-0.1689      0.0759    -0.9952 

-26.859   -2.5472      0.0689 

9.3603    -0.1773    -2.4792 

0   0 
(A 

XQ + 1   0 

0   1 u + 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 0 

Mo 

(4.26a) 

1        0 0 

0   0.9971    0.0755 
XQ + 

0    10   0   0 

10   0   0   0 
Mo- (4.26b) 

A fault model simulating an electrical interruption to a flight control computer's input 

channels may be represented as 

1    1   0 0   0 

M 0   1    1 Xi + 1   0 J + 
0   0   1 0   1 \    / 

1       0 0 

0   0.9971   0.0755 
X\ + 

0 0 0 0 1 

0 0 0 10 

0   0   10   0 

0   10   0   0 

10   0   0   0 
Ml- 

Mi (4.26c) 

(4.26d) 
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The three states are side-slip, roll rate, and ya,w rate, and the control vector is 

(rudder input 

stick input 

Assuming that the detection signal is applied on the same channels as the control 

vector during the test period, one of the following occurs: 

• the control is nulled so that only the detection signal is inputted, 

• the control remains. It is subtracted from v from the MEDS algorithm 

to obtain the additional signal required to separate the output sets of the 

two models. 

The second option is the equivalent of solving one of the alternative problems de- 

scribed in Chapter 2, i.e., 

min||u|| subject to   max Ju+V(ß) > 1. (4.27) 

If the detection signal must be kept off of the control channels, then the other problem 

described in Chapter 2 is solved, i.e., 

min||u;i||  subject to    max Jw(ß) > 1  and  w2 — u. (4.28) 

where the dynamics are described by 

x\ = AtXi + BiV + EiU + MiHi. (4.29) 

and where w = [wi,w2] = [v,v]. Obviously, if the nulling option is chosen, the test 

period should be kept as short as possible to avoid aircraft control difficulties. The 

results below reflect the nulling option. 

SOCS has no difficulty solving this problem. The FORTRAN code generated is 

lengthy, but optimized coding methods can minimize the impact of this effect. In 

fact, standard routines for translating matrix multiplication into FORTRAN loops 
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can reduce the effect of the added dimensionality to virtually zero. Figures 4.21 and 

4.22 give v, ye(t), and ae(t) for this problem on the interval [0,1]. 

0.1 0.2        0.3        0.4        0.5        0.6        0.7 

Figure 4.21: Components oiv for Example 4.12: tf = 1 

I &2        0.3        0.A        0.5        0.6        07        0.B        0.9 1 

Figure 4.22: Components of y£(t) and ae(t) for Example 4.12: e = 0.7 

These results demonstrate that the FDMI algorithm is capable of handling higher 

dimensional problems and is limited only by the multi-model assumptions inherent 

in the approach. 
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4.7    Multiple Fault Model Examples 

To conclude the analysis of examples, we examine two systems, each of which has a 

nominal model and two fault models. One of these systems is one-dimensional and 

the other is two-dimensional. 

Recall from Chapter 2 the two approaches described to handle multiple fault 

model problems. The first method is sequential in nature, in which the test period is 

divided into equal segments, and problems involving each pair of models are solved on 

the shorter intervals. It was suggested that this method would produce a v that was 

larger than necessary. The second method should produce a v of much lower energy. 

It is simultaneous in nature, in which the pairwise problems are solved independently 

on the full interval for a common v. 

Our last two examples demonstrate the ability of the FDMI algorithm to handle 

multiple fault model systems as well as shed light on the conjecture of Chapter 2 

about the energy of the v resulting from each method. 

4.7.1    One-Dimensional Example 

The simplest multiple fault model problem is given in Example 4.13. 

EXAMPLE 4.13. [Change of eigenvalue, stable/stable/stable] This problem, has a 

stable nominal model and two stähle fault models. Eigenvalues are —1, —3, and —0.2, 
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respectively. 

model 0: x'0 = —x0 + v + [i2 (4.30a) 

y = XQ + U.X (4.30b) 

model 1: x\ = -Sxi+v + fa (4.30c) 

y = zi+/x3 (4.30d) 

model 2: x'2 = -0.2z2 + v + \i% (4.30e) 

y = Z2 + M5- (4.30f) 

Figure 4.23 gives v for the two methods. On the left is the comparison of v using 

the sequential method on [0,1], [1,2], and [2,3] to that of the simultaneous method 

on [0,3]. The plots are in the same scale, and it is obvious that the simultaneous 

method produces a v of much lower energy. On the right side of Figure 4.23 is a 

comparison of v from the simultaneous method to each v obtained by solving the 

pairwise problems completely independently on the entire interval [0,3]. For this 

problem, the simultaneous v is the same as the highest energy v from the independent 

pairwise problems. Thus, we can handle multiple fault models for the same energy 

and with the same v wave form as required for one fault model. Often, however, the 

simultaneous v will require more energy and will not be the same shape as the any 

of the three independent v. However, the similar shapes of the v for this problem 

suggest that if feasibility issues arise in the simultaneous method, the v from the 

pairwise problems, or multiples thereof, can be applied as an accurate initial guess 

for the combined problem. 

Figure 4.24 gives the y£(t) and a£(t) for the sequential method, and Figure 4.25 

gives the same for the simultaneous method. The only immediate advantages which 

can be gleaned for the simultaneous method from these plots is the continuity of y and 
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a over the entire interval, and the lack of a requirement to maintain three different test 

functions. Since y and a must be stored, if a number of comparisons between multi- 

dimensional models must be made, the reduced number of test functions demonstrates 

better use of possibly limited memory resources. 

Figure 4.23: v for Example 4.13 sequential vs. simultaneous (left), 
full interval two-model vs. simultaneous (right) 

Figure 4.24: ye(t) and ae(t) for Example 4.13: sequential solve 
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0.5 1 1.5 2 2.5 

Figure 4.25: ye(t) and ae(t) for Example 4.13: simultaneous solve 

4.7.2    Two-Dimensional Example 

Our final example exhibits several interesting stability properties. 

EXAMPLE 4.14. [Change of eigenvalues, stable/stable/unstable] This problem has 

a stable nominal model, one stable fault model, and one unstable fault model. Nominal 

model eigenvalues are —2 ± i. Fault model 1 eigenvalues are —9.7016 and —3.2984. 

Fault model 2 eigenvalues are \ ± 1.3229z. 

model 0: x'u 

-1     2 
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y  = l  l XQ + 

model 1: x\   = 
-10     2 
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1   0   0 
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Xi + 

model 2: x'0 
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1     2 

-1   0 

1   1 

X\ + 

x2 + 

x2 + 
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v + 
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0 1   0 

0   0   1 

0   1   0 

Mo 

Ml 

Ml 

v + 
0   0   1 
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M2 

M2- 

(4.31a) 

(4.31b) 

(4.31c) 

(4.31d) 

(4.31e) 

(4.31f) 
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Figure 4.26 gives v for the two methods. On the left is the comparison of v 

using the sequential method to that of the simultaneous method. The plot oscillating 

minimally around the horizontal axis is that of the simultaneous method. Again it 

is obvious that the simultaneous method produces a v of much lower energy. On the 

right side of Figure 4.23 is a comparison of v from the simultaneous method (dotted 

line) to the v obtained by solving the pairwise problems completely independently 

on the entire interval (solid lines). The simultaneous v is not the same as any other 

v from the independent pairwise problems. In fact, the simultaneous v contains an 

extra extrema on the interval. Even so, the plot shows that we can handle multiple 

fault models with only a bit more energy than required for a single fault model. 

Figure 4.27 gives the ye(t) and ae(t) for the sequential method, and Figure 4.28 

gives the same for the simultaneous method. Again, the only advantages appear to 

be the continuity of y and o, and simplicity of the test function for the simultaneous 

method. 

4.8    Conclusion 

The purpose of this chapter was to give examples and analysis of the practical aspects 

of the FDMI algorithm. After restating the problem and one form of the algorithm, 

we examined the simplest problems in one dimension to ascertain shapes and ener- 

gies of the minimum energy detection signals for those problems. Comparisons of one 

problem in four different formulations using different initial guesses showed that each 

arrived at the same optimal solution, supporting uniqueness assertions made in Chap- 

ter 3. We then looked at more complex examples in two dimensions to demonstrate 

how the basic shapes and energies of v evolve. An unobservable system was tested, 

and despite a known lack of uniqueness of the closest points in the output sets, the 
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Figure 4.26: v for Example 4.14 sequential vs. simultaneous (left), 
full interval two-model vs. simultaneous (right) 

Figure 4.27: yt(t) and ae(t) for Example 4.14: sequential 
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Figure 4.28: yt(t) and ac(t) for Example 4.14: simultaneous 

FDMI algorithm and SOCS provided a solution. An industrial strength example in 

three dimensions proved that the algorithm and SOCS were capable and efficient even 

in the higher dimensions. We ended with examples of the extension of the algorithm 

to problems with multiple fault models. 

Throughout the examples we saw varying degrees of sensitivity to the value of e. 

It was demonstrated that some care must be taken in choosing the value of e used in 

the algorithm. However, it was also shown that high quality results can be reliably 

computed with the proper selection of e. In addition, we saw some difficulties arising 

due to very small objective function values. A method of automatic conditioning 

on objective functions should be developed to overcome these difficulties. Finally, 

systems for which a feasible initial guess is difficult to obtain due to initial mesh 

size considerations may require pre-conditioning to facilitate making the initial guess. 

This problem may also arise due to the fact that — v and v are both optimal solutions. 

An initial guess of v = 0 may be suitable for some problems, but it is a saddle point, 
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and using it could slow down convergence of the SOCS program. Despite these issues, 

the analysis in this chapter demonstrates the efficiency and practicality of the FDMI 

algorithm. 



Chapter 5 

Future Work and Conclusions 

5.1    Future Work 

Up to this point, we have exercised the FDMI algorithm mostly within the confines of 

certain assumptions about the structure of the problem to be solved. For example, we 

have assumed a short test period length, no a priori knowledge of initial conditions on 

the state, and strict linearity in the dynamics. While we have extended the algorithm 

to problems with multiple fault models, with a pre-existing known control, and with 

alternative cost functions, we have not mentioned other variations that may help to 

extend the algorithm to an even larger set of problems. Some variations we have 

mentioned, but have left to future research. The unreduced model, mentioned in 

Chapter 2, would be of direct benefit to several types of problems excluded from our 

study. Also, unobservable systems, theoretically excluded from the FDMI algorithm, 

may in fact be treatable. While we discussed the possibility of applying the FDMI 

algorithm to such systems, and even worked an example for which the algorithm 

provided a solution, the bulk of the work remains. In particular, the most promising 

aspect, that of projecting each model onto a subspace to eliminate the parallel sides, 

is left undone. 
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This chapter will introduce and discuss several other interesting and applicable 

variations to the basic problem and the impact they have on the FDMI algorithm. 

Topics mentioned below are: the half-infinite interval, linear time varying problems, 

nonlinear problems, independent noise channels, and sensitivity issues. We mention 

these topics for the purpose of highlighting the work still remaining in this area, and 

thus will not attempt a complete and detailed look at each one. Conclusions follow 

the last topic and complete our discussion. 

5.1.1    The Half-Infinite Interval 

We mentioned in Chapter 1 that Nikoukhah et d. [29] was the inspiration for the 

work contained in this thesis. In that paper, theory is developed for the limiting 

shape and energy of v on the interval [0, oo). While in practice the use of the half- 

infinite detection horizon is not always possible due to unstable fault models or cost 

considerations, theoretical development of the limiting case can aid in approximating 

detection signals and separability indices on long intervals. As this thesis is dedicated 

more to practical applications of online detection, we leave the development of the 

limiting case to future research. 

To aid in that research, we note that Riccati matrix differential equations provide 

convenient properties on, and useful insights into the half-infinite interval. Finite in- 

terval Riccati differential equations become algebraic equations as tf goes to infinity. 

In fact, a large part of the Riccati form of the FDMI algorithm should be directly 

extendable to the half-infinite interval. The translation of other parts and confirma- 

tion of the results remain to be accomplished. In particular, questions remain about 

the multiple fault model case, and whether the FDMI algorithm will be capable of 

addressing those problems on the half-infinite interval. 



Chapter 5.   Future Work and Conclusions 131 

5.1.2    Linear Time Varying Models 

The linear time invariant problem addressed thus far is a special case of a larger set of 

control problems, the linear time varying (LTV) problem. In the LTV case, linearity 

still exists, but the coefficient matrices A, B, C, M, and N depend on time. Thus 

the multi-model system model 4.1 becomes 

x\   =   AiMxi + Bifäv + MiWfii (5.1a) 

y   =   Ci{t)xi + Ni{t)iJLi (5.1b) 

for i = 0,...,m. Luckily, convexity still exists due to linearity, so the same visu- 

alizations and characterizations of system dynamics and outputs can be made. In 

fact, even much of the Riccati theory mentioned in the previous section holds. Un- 

fortunately, the infinite interval algebraic Riccati equation does not hold, so further 

research not based on our Riccati approach will be required for that case. 

We should also note that the system reductions described in Chapter 2 will now 

involve time varying matrices, so software must be chosen which can handle the new 

complexities involved. In addition, technical difficulties arise due to time-varying 

coordinate changes, x — Q(t)w. Q' will enter the equations, and differentiation of 

computed quantities is highly undesirable. Also, even if Ni is full row rank there still 

may not exist a submatrix which is invertible for all t. These difficulties highlight 

the need to develop a theory and algorithms that work on systems in their original, 

unreduced form. It is apparent that much adaptation of theory, further development 

of algorithms, and tests of new examples are required before the LTV subject can be 

considered closed. 
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5.1.3    Nonlinear Models 

Another larger set of control problems of which the LTI problem is a special case is 

the nonlinear problem. The semi-explicit nonlinear control problem can be written 

as 

x'   =   f[x(t),u(t),t] (5.2a) 

y   =   g[x(t),u{t),t}. (5.2b) 

While the FDMI algorithm should, in principle, be extendable to these types of 

systems, technical and computational difficulties arise due to the loss of convexity. 

As a result, solutions are only locally optimal, if they can be shown to exist at all, 

and the implementation of the algorithm in optimization codes becomes subject to 

significant initial guess and convergence issues. 

Of the general class of nonlinear control problems, three types show promise for 

more immediate application of the FDMI algorithm. These are: small bounded non- 

linearities, nonlinearities in only the control, and nonlinearities involving coefficient 

matrices dependent on v. We discuss each of them in turn. 

Small Nonlinearities 

Small norm-bounded nonlinearities do not present undue difficulties to the FDMI 

algorithm. Suppose that the models and noise bounds are of the form 

x\   =   AiXi + giix^tf + BiV + Mißi (5.3a) 

y   =   dxi + Ni/ii (5.3b) 

IHI2   <   I- (5-3c) 
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If 11^(^1,^)11 < e, then we can address (5.3) by considering 

x'i   =   AiXi + BiV + Mipi (5.4a) 

y   =   dxi + N&i (5.4b) 

ll/Iill2   <   1 + eHf (5.4c) 

where Ji = [   M , M; = [/ M;], and N{ = [0 ^]. After rescaling, (5.4) is in the form w 
required by the FDMI algorithm. This formulation will produce an answer which over 

estimates the required ||u||. Many robust algorithms can handle small nonlinearities 

in this way. Tests of the efficiency of the v produced via this formulation are left to 

future research. 

Nonlinear in the Control 

Another way nonlinearities may enter the problem is through the control. Recall from 

Chapters 2 and 3 that [30] begins with our problem and assumptions, but goes in 

quite a different direction to develop the detection signal and separating hyperplane. 

While that approach seems more direct and satisfying, it is not capable of handling 

nonlinear controls. The FDMI algorithm gains a distinct advantage in this aspect 

because it can solve problems with nonlinearities in the control. 

Suppose that the nonlinearly controlled models are 

x\   =   AiXi + Big(v) + MM, (5.5a) 

y   =   dxi + Nifii (5.5b) 

where v may be a steering angle, for example, and thus would enter the equations as 

cosu. The 2nR form of the optimization problem is now 

min ||u|| such that Jg^v)(ß) > 1  for some ß G [0,1] (5.6) 
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which, after the reductions described in Chapter 2, becomes a nonlinear boundary 

value problem. While SOCS has excellent nonlinear capabilities, the nature of g(v) 

will have a lot to say about the solution to the BVP. If the function is not one to one, 

as cosü is not, then we should expect multiple local minima and saddle points. The 

rate of convergence to, and the quality of the solution then become a function of the 

initial guess. Development of an efficient initial guess algorithm becomes paramount, 

and is a ripe topic for future research. 

Coefficient Matrices Dependent on the Detection Signal 

An interesting class of nonlinear problems involves system coefficient matrices which 

can be affected by the detection signal. The system models for this class are 

x'i   =   Aiitfxi + BiWv + MiWin (5.7a) 

y   =   CiWxi + NiWiM. (5.7b) 

For this problem, for a given v the output sets, A^v), are still convex. However, 

they vary nonlinearly with v. Given that one has a proper detection signal, the 

FDMI algorithm can still be used to solve for the normal to the separating hyperplane. 

Obtaining the minimum energy proper detection signal may not be as straightforward. 

Since the minimization of \\v\\ occurs on the outside of all other operations, the 

algorithm may work as coded in SOCS. On the other hand, this type of problem is 

similar to the LTV problem, but with an added nonlinear structure. The difficulties 

described for that problem are applicable here as well. Reductions involving nonlinear 

u-varying matrices will undoubtedly be more complex than those involving linear 

time varying matrices, and will require algorithms and software that can handle their 

complexities. In addition, if a ^-varying coordinate change is required, then v' may 

enter the equations. As in the LTV case, one should avoid differentiating a computed 

quantity. Each of these issues provides a strong argument for developing algorithms 
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based on the unreduced problem. As in the LTV problem, adapting the algorithm, 

confirming the theory, and testing examples remains as future research. 

5.1.4 Independent Noise Bounds 

Systems may have an added complexity in that noise channels arc independently 

bounded. Thus, the expression for the bound on the noise changes from 

llrf<l.   « = 0,1 (5.8) 

to 

W/iijW2 <1,  z = 0,1,  j = l,...n{ (5.9) 

where j is the channel and n; is the number of noise channels in model i. This addi- 

tional complexity has a far reaching impact on the problem. First, (5.9) is equivalent 

to WfAiWlo < 1, and IIAüHOO is not a strictly convex norm. Also, the construction of 

the auxiliary cost function, «/„(/?), must now accomodate n0 + ny terms. Finally, the 

translation of the cost function into those terms necessary for the application of op- 

timal control theory may or may not be possible. Much work remains undone in this 

area, including the possible requirement of all new theory. 

5.1.5 Sensitivity Issues 

While we have talked about the sensitivity of the separating hyperplane to the value 

of e, we have ignored other sensitivity issues. One is often interested in the sensitivity 

of the solution to perturbations of the system coefficient matrices Ai, Bi, and so on. 

If coefficients are slightly inaccurate, then we would like to say that the test function 

from the FDMI algorithm is still usable, but subject to some error. A sensitivity 

study identifies bounds on the error due to coefficient perturbations.   It should be 
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noted that, as in the small nonlinearities case discussed above, the algorithm can be 

modified to be robust to bounded perturbations of the system coefficients via the 

addition of more noise terms resulting in a higher energy than necessary detection 

signal. In that light, the development of some results in the sensitivity issue will 

closely follow those of the small nonlinearities problem. As an alternative, one could 

consider system matrices A{ + AAt, B{ + ABh and so on, where AA{ and A£; are 

small. System models for this approach are straightforward to write down, but will 

involve many more parameters than the unperturbed models. The optimal solution 

will depend on the perturbations, providing the sensitivity information one seeks, but 

solving the problem will be computationally expensive. Regardless of the approach 

taken, much more work on sensitivity issues remains. 

5.2    Conclusions 

Our goals for this thesis were to apply the multi-model approach to fault detection and 

model identification in linear descriptor systems, modeling noise as bounded energy 

signals, proving that this combination is a valid and efficient tool for these types of 

problems, and to develop an algorithm that demonstrates perfect fault detection and 

model identification. As we saw in Chapter 1, the combination of the multi-model 

approach and the bounded energy noise model is under-explored, in that very little 

existing literature reports their combined use. Most work in the multi-model approach 

uses statistical noise models which, while theoretically attractive, do not provide the 

computational friendliness to optimization software that the bounded energy noise 

models do. The remaining theory involves the single-model approach, utilizing either 

feedback or observer design for imperfect fault detection and model identification. 

After laying the groundwork for the types of systems to be addressed and the 

numerical methods to be applied to those systems in Chapter 1, we developed the 
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theory for the first half of the problem, fault detection, in Chapter 2. There, after 

defining the minimum energy detection signal, we constructed the auxiliary cost func- 

tion. We then translated the problem into a nested optimization problem suitable for 

implementation in SOCS, solving for the necessary conditions for a minimum of the 

inner problem, and then using those conditions as constraints on the outer problem. 

We presented four forms of the MEDS algorithm, two of which apply matrix Riccati 

differential equation theory, which is well-suited to the limiting half-infinite interval 

case. After stating the algorithm, and the software in which we implemented it, we 

addressed several variations of the problem for which the algorithm is well suited, 

most notably the multiple fault model case, with which prior work in this area is not 

compatible. 

Next we turned to the second half of the problem, model identification. Given an 

output, our detection signal ensured that only one model could have produced it. In 

Chapter 3 we developed the theory for the separating hyperplanc for the output sets. 

We reduced the input of the noise to the system in order to translate the problem into 

an optimization problem, the solution of which gave an approximation to the normal 

of the separating hyperplane. The equation of the normal was implemented as a 

test function in the MI algorithm. After stating the algorithm, we again addressed 

variations of the problem, and showed that the second half of the algorithm is as 

equally suited to those variations as the first half. 

Chapter 4 was dedicated to the presentation and analysis of various types of ex- 

amples. We applied our implementation of the FDMI algorithm to one-, two-, and 

three-dimensional examples, demonstrating comparable performance on all. A mul- 

tiple fault model case was examined, and the capability of the algorithm in this area 

was shown to be as expected. In fact, the only unexpected result came from an exam- 

ple that was constructed to force the SOCS version of the algorithm to fail. Instead 

of failing, the algorithm worked, demonstrating unanticipated robustness.   Despite 
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this success, some indications of difficulty were uncovered. Initial guess construction, 

starting mesh size, objective function scaling, and the selection of e each showed signs 

of becoming factors in certain problems but not in others. These issues should be 

resolved before any real-world application of the algorithm. 

Finally, in the present chapter, we introduced several extensions of the FDMI 

algorithm, describing the basics of each, but leaving the bulk of the work to future 

research. The tools developed in this thesis show much promise for numerically solv- 

ing the fault detection and model identification problem in linear descriptor systems. 

Where previously there existed few multi-model methods for dealing with short deci- 

sion horizons, this work provides a new approach for online fault detection and model 

identification. 
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Appendix A 

Software Drivers 

Several pieces of commercial software can be combined to implement the FDMI algo- 

rithm presented in this thesis. Model reduction is efficiently accomplished in MAT- 

LAB, by The MathWorks, Inc. [26]. FORTRAN code generation of the reduced 

system model is done in MAPLE, by Waterloo Maple, Inc. [18]. Optimization is car- 

ried out in SOCS, by Boeing [3, 4] for both the minimum energy detection signal and 

the normal to the separating hyperplane. MATLAB is used to analyze the output 

from SOCS and create plots. Sample driver files for each phase of this process are 

included below. 

A.l    Model Reduction 

The transformation of the original system to the reduced model discussed in Chapter 

2 is accomplished by the following MATLAB m-file. 

*/,reduced2d.m 
'/.current parameters for: common mode example (examlO) 

'/.system matrices 
A0=[1 0; 

0 2]; 
Al=[l 0; 
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0 3]; 
B0=[2  1; 

1 2]; 
Bl=[2  1; 

1  2]; 
C0=[1 0; 

0 1]; 
Cl=[l 0; 

0  1]; 
M0=[0 0 0  1; 

0 0  10]; 
M1=[0 0 0 1; 

0 0  10]; 
N0=[0  1  0 0; 

10 0 0]; 
N1=[0 10 0; 

10 0 0]; 

7,may need to do constant orthogonal change of coords on the noise 

°/,do it via a QR decomp on N_i"T to get [Nb_i 0] , 

°/,where Nb_i is invertible, also gives [Mb_i Mt_i] 

[Q0,R0]=qr(N0O 

[Ql,Rl]=qr(Nl>) 

pause 

'/„now N_i"T = Q_i * R_i, so N_i = R_i"T * Q_i~T 

"/„and Q_i"T is an orthogonal matrix 

"/.absorb Q_i"T into the noise vector nu_i to get new noise vector 

"/.and Nb_i becomes the invertible part of R_i~T 

"/.may need to fix 

R0=-R0; 

R1=-R1; 

Q0(1,1)=-Q0(1,1) 
Q0(2,2)=-Q0(2,2) 

qi(i,i)=-Qi(i,i) 
qi(2)2)=-Ql(2,2) 

signs in Q_i and/or R_i 

'/.break down into Mb_i, 

LmN0,nN0]=size(N0); 

[mNl,nNl]=size(Nl); 

mnN0=min(mN0,nN0); 

Mt_i, Nb_i, and Nt_i (zeros) 
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mnN1=min(mN1,nN1) 

mxNO=max(mNO,nNO) 

mxN1=max(mN1,nN1) 

NOn=RO'; 

Nln=Rl'; 
NbO=NOn(1:mnNO,1:mnNO) 

Nbl=Nln(l:mnNl,1:mnNl) 

NtO=NOn(:,mnNO+l:mxNO) 

Ntl=Nln(:,mnNi+l:mxNl) 

MOn=MO*QO'; 

Mln=Ml*Ql'; 

MbO=MOn( 

Mbl=Mln( 

MtO=MOn( 

Mtl=Mln( 

,l:mnNO); 

,l:mnNl); 

,mnNO+l:mxNO) 

,mnNl+l:mxNl) 

'/.just need the size of this 

'/.and this 

"/.create reduced model system matrices 

[mA0,nA0]=size(A0); 

[mAl,nAl]=size(Al); 

[mMtO,nMtO]=size(MtO); 

[mMtl,nMtl]=size(Mtl); 

[mNb,nNb]=size(Nbl); 

[mNtO,nNtO]=size(NtO); 

[mNtl,nNtl]=size(Ntl); 

A=[AO-MbO*inv(NbO)*CO MbO*inv(NbO)*Cl;  zeros(mAl,nA0)  Al] 
M=[MtO MbO*inv(NbO)*Nbl zeros(mMtO,nMtl);  zeros(mMtl,nMtO)  Mbl Mtl] 
B=[B0;B1] 
C=[inv(NbO)*CO -inv(NbO)*Cl]; 
N=inv(NbO)*[zeros(mNb.nNtO) Nbl zeros(mNb,nNt1)]; 

7oQ and H without beta 
Qnb=2*C'*C 
Hnb=-4*C'*N 

'/.size of upper left block of R 

ulident=nNtO 

7.Nbl'NbO'"-lNbO"-lNbl for the center block of R 

Nbl 
Nmess=Nbl,*inv(NbO')*inv(NbO)*Nbl 
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'/.size of lower right block of R 

lrident=nNtl 

'/end of routine 

Outputs from this routine are used as follows: 

• sizes of reduced model system matrices are inputted into MAPLE, 

• parameters of the R matrix are inputted into MAPLE, 

• parameters of the reduced model system matrices are inputted into SOCS. 

A.2    Fortran Code Generation 

The following MAPLE routine takes the sizes of reduced model system matrices and 

the parameters of the R matrix and creates FORTRAN code for pasting into the 

SOCS FORTRAN driver. 

°/reduced2d.mws 
> restart; 

> with(linalg): 

'/sizes of reduced system matrices 
> A:=matrix(4,4) 
> B:=matrix(4,l) 
> M:=matrix(4,5) 
> Q:=matrix(4,4) 
> H:=matrix(4,5) 
> Nmess:=matrix(l,l); 

"/structure of the R matrix 
> R:=matrix(5,5,[2*P[i],0,0,0,0,0,2*P[l],0,0,0,0,0,2*(l-P[l])+ 
2*P[l]*Nmess[l,l],0,0,0,0,0,2*(1-P[1]),0,0,0,0,0,2*(1-P[1] )]); 

7,S0CS needs all variables in a single vector 
> Z:=vector(15); 
> x:=vector(4, [Z[l] ,Z[2] ,Z[3] ,Z[4]]) ; 
> lambda:=vector(4,[Z[5],Z[6],Z[7],Z[8]]); 
> nu:=vector(5, [Z[10] ,Z[11] ,Z[12] ,Z[13] ,Z[14]]) ; 
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> v:=vector(l,[Z[15]]); 

'/.create constraint equations 
> Fl:=matadd(matadd(multiply(A,x).multiply(B,v)),multiply(M,nu)) 

> F2:=matadd(matadd(multiply(-P[l]*Q,x).multiply(-P[l]*H,nu)/2), 

multiply(transpose(-A).lambda)); 

> F3:=(multiply(multiply(transpose(x),P[1]*Q),x) 

+multiply(multiply(transpose(x),P[1]*H),nu) 

+multiply(multiply(transpose(nu),R),nu))/2; 

> F4:=matadd(matadd(multiply(R,nu), 

multiply(transpose(P[1]*H),x)/2).multiply(transpose(M).lambda)); 

'/.translate constraint equations into FORTRAN code 

> fortran(Fl) 

> fortran(F2) 

> fortran(F3) 

> fortran(F4) 

'/.end of routine 

A.3    Optimization via the FDMI Algorithm 

The following SOCS driver takes the FORTRAN code output by the above MAPLE 

routine, as well as the parameters of the reduced model system matrices from the 

above MATLAB routine, to accomplish both halves of the FDMI algorithm. 

C Main driver: 2dex4m.f 

PROGRAM MID42D 

C Generic 2D FDMI problem on [TO.TF] in formulation 2nR 

C using min distance between convex set theory 

C Need to set problem parameters in seven places: 

C a few lines down from here, and in 0PT2IN, MID2IN (TO.TF only) 

C near end of MAIN (output file names in open calls) 

C in 0PT2DE (all coordinate changed parameters) 

C in MID2DE (all original problem parameters plus epsilon (EPSIL)) 

C in function YBAR(T) (coordinate changed parameters Cl and NB1) 
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C current parameters are for: multimod2d_12 

INTEGER I,NIW,MAXPHS,NW,MAXCS,MAXDP 

PARAMETER (NIW = 10000000,MAXPHS = 5,NW = 10000000,MAXCS=100000) 

PARAMETER (MAXDP = 1000) 

INTEGER IW(NIW),IPCPH(MAXPHS+1),IPDPH(MAXPHS+1).NEEDED,IER 

DOUBLE PRECISION TO,TF,T,W(NW),CSTAT(MAXCS),DPARM(MAXDP),YBAR 

PARAMETER (T0=0.D0,TF=1.DO) 

C OCSEVL will be called during second SOCS run (MI) to extract 

C output from first SOCS run (MEDS) needed in MI optimization, so need 

C to save some of the parameters from first SOCS run that are args 

C to OCSEVL to new variable names as defined below 

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1) 

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW) 

C Also need them to be common because SOCS will not pass them 

C to the functions that use them 

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2 

INTEGER IPHASE,NDP,IOUNIT,IOFLAG,NPTAUX,MXSTAT,NDYN 

PARAMETER (MXSTAT = 20) 
DOUBLE PRECISION STSKL(0:MXSTAT),DTAUX 

EXTERNAL 0PT2IN,MID2IN,DUMYIG,0PT2DE,MID2DE 

EXTERNAL DUMYPF,DUMYPR 

C Output verbosity 
CC     CALL HHS0CS('IPGRD=O') 

C default=10 
C     CALL HHS0CS('IPFSFD=O') default=0 

CC     CALL HHSOCS('IPNLP=0') 

C default=10 
C     CALL HHS0CS('IP0DE=O') default=0 

C     CALL HHSNLP('IOFLAG=0') 

C default=10 
CALL HHSNLP('MAXNFE=50000') 

CALL HHSNLP('NITMAX=1000') 
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CALL HHSNLP('KTOPTN=SMALL') 

CALL HHSNLP('ALGOPT=FM') 

CALL HHS0CS('MIT0DE=15') 

CALL HHS0CS('0DET0L=l.D-7') 

CALL HHSOCS('SPRTHS=SPARSE') 

CALL HHS0CS('MTSWCH=3') 

CALL HHS0CS('NSSWCH=1') 

C Optional tolerances for quicker convergence 

C     CALL HHS0CS('0DET0L=0.2D-4') 

C     CALL HHSNLP('C0NT0L=l.D-5') 

C     CALL HHSNLP('0BJT0L=l.D-5') 

WRITE(*,*) 'MADE IT: START OF MIN V PROBLEM' 

C OPTIMIZATION TO FIND MIN ENERGY PROPER V - first SOCS call 

CALL HDS0CS(0PT2IN,DUMYIG,0PT2DE)DUMYPF,DUMYPR) 
+ IW.NIW.W.NW.MAXPHS.CSTAT.MAXCS.IPCPH.DPARM.MAXDP, 

+ IPDPH.NEEDED.IER) 

C Transfer args for OCSEVL 

DO 10 I = l.MAXCS 

CSTAT2(I) = CSTAT(I) 

10  CONTINUE 

DO 20 I = l.MAXPHS+1 

IPCPH2(I) = IPCPH(I) 

IPDPH2CI) = IPDPH(I) 

20  CONTINUE 

DO 30 I = l.MAXDP 

DPARM2(I) = DPARM(I) 

30  CONTINUE 

DO 40 I = i.NW 

W2(I) = W(I) 
40  CONTINUE 

C Output YBAR and optimal solution from MEDS phase 

I0UNIT=32 

OPEN(IOUNIT,FILE='thrmod2d_lyb.dat',STATUS='UNKNOWN') 

DO 50 I = 1,251 
T = T0+(TF-T0)*(I-1)/2.5D2 
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WRITECIOUNIT,*) YBAR1(T),YBAR2(T),YBAR3(T) 

50  CONTINUE 

CLOSE(IOUNIT) 

OPEN(IOUNIT,FILE='thrmod2d_lds.dat',STATUS='UNKNOWN') 

NPTAUX = 250 

NDP = 15 

NDYN =16 

DTAUX = 0 

IOFLAG = 10 

IPHASE = 1 

CALL DFILL(NDYN,1.D0,STSKL,1) 
CALL AUXOUT(IPHASE,CSTAT,DPARM,NDP,STSKL,W,NW,IOUNIT, 

+ IOFLAG,NPTAUX,DTAUX.DUMYPR) 

CLOSE(IOUNIT) 

C OPTIMIZATION TO FIND TEST FUNCTION - second SOCS call 

WRITE(*,*) 'MADE IT: START OF TEST FN PROBLEM' 

CALL HDS0CS(MID2IN,DUMYIG,MID2DE,DUMYPF,DUMYPR, 

+ IW,NIW,W,NW,MAXPHS,CSTAT,MAXCS,IPCPH,DPARM,MAXDP, 

+ IPDPH,NEEDED,IER) 

C Output complete optimal solution from MI phase 

IOUNIT = 32 
0PEN(I0UNITJFILE='thrmod2d_lm7.dat',STATUS='UNKN0WN') 

NPTAUX = 250 

NDP = 14 

NDYN =15 

DTAUX = 0 

IOFLAG = 10 

IPHASE = 1 
CALL DFILL(NDYN,1.DO,STSKL,1) 
CALL AUXOUT(IPHASE,CSTAT,DPARM,NDP,STSKL,W,NW,IOUNIT, 

+ IOFLAG,NPTAUX,DTAUX,DUMYPR) 

CLOSE(IOUNIT) 

END 
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C MEDS phase driver 

SUBROUTINE 0PT2IN(IPHASE,NPHS,METHOD,MSTG,NCF,NPF,NPV,NAV, 
+ NGRID,INIT,MAXMIN,MXPARM,PO,PLB,PUB,PLBL, 
+ MXSTAT,YO,Yl,YLB,YUB,STSKL,STLBL,MXPCON,CLB, 
+ CUB,CLBL,MXTERM,COEF,ITERM.TITLE,IER) 

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID, 
+       INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM), 
+       IER 

DOUBLE PRECISION PO(MXPARM),PLB(MXPARM),PUB(MXPARM),YO(0:MXSTAT), 
+        Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT), 
+        STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON), 
+        COEF(MXTERM) 

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80, 
+        CLBL(0:MXPCON)*80,TITLE(3)*60 

DOUBLE PRECISION TO,TF 
PARAMETER (T0=0.D0,TF=1.DO) 

METHOD = 3 
NSTG = 1 
NCF(l) = 9 
NCF(2) = 5 
NCF(3) = 1 
NPF(2) = 0 
NAV = 6 
NPV = 1 
NGRID = 11 
INIT = 1 
MAXMIN = -1 

C Initial and final time 

Y0(0) = TO 
Y1(0) = TF 

C Initial guesses, v = 1, beta somewhere in the interior of [0,1] 

DO 10 I = 1,14 
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YOU) = O.DO 
10      CONTINUE 

Y0(15)  = 1.D0 

DO 20 I = 1,14 

Y1U) = O.DO 

20  CONTINUE 

Yl(15) = l.DO 

P0(1) = 0.2D0 

C Fix the boundary conditions 

DO 30 I = 5,9 

YLBC-1,1) = O.DO 
YUB(-l.I) = O.DO 

30  CONTINUE 

DO 40 I = 5,8 

YLB(l.I) = O.DO 
YUB(l.I) = O.DO 

40  CONTINUE 

YLB(1,9) = l.DO 

C Bound BETA (avoiding singularities at 0 and 1) 

PLB(l) = 0.01D0 

PUB(l) = 0.99D0 

C Fix the start and finish time 

YLB(-l.O) = Y0(0) 

YUB(-l.O) = Y0(0) 

YLB(l.O) = Y1(0) 

YUB(l.O) = Y1(0) 

C Equality constraints 

DO 50 I = 1,5 

ITERM(l.I) = I 

ITERM(2,I) = 1 

ITERM(3,I) = 0 
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ITERM(4,I) = -I 

CLB(I) = O.DO 

CUB(I) = O.DO 

50  CONTINUE 

C Objective function 

ITERM(1,6) = 0 
ITERM(2,6) = 1 

ITERM(3,6) = 0 
ITERM(4,6) = -6 

RETURN 

END 

C MEDS constraint definition 

SUBROUTINE 0PT2DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR) 

INTEGER IPHASE,NZ,NP,NF,IFERR 

DOUBLE PRECISION T.Z(NZ),P(NP),F(NF) 

DOUBLE PRECISION A(4,4),B(4,1),S1,S2 

DOUBLE PRECISION M(4,5),H(4,5),Q(4,4),Nmess(l,1) 

C Nine ODE constraints 

C Variable list: x:Z(l)-Z(4), lambda:Z(5)-Z(8), Z:Z(9), 

C nu:Z(10)-Z(14), v:Z(15), beta:P(l) 

INTEGER R,C 

C Problem parameters 

DATA ((A(R,C),C=1,4),R=1,4)/-1.D0,1.D0,0.D0,0.D0, 
#-1.DO,-3.DO,O.DO,O.DO, 

#0.DO,O.DO,-10.DO,1.DO, 

#0.DO,0.DO,-1.DO,-3.DO/ 

DATA ((B(R,C),C=1,1),R=1,4)/1.D0,0.D0,1.D0,0.D0/ 

DATA ((M(R,C),C=1,5),R=1,4)/0.D0,1.D0,0.D0,0.D0,0.D0, 

#1.DO,O.DO,O.DO,O.DO,O.DO, 

#0.D0,0.D0,0.D0,0.D0,1.D0, 

#0.DO,0.DO,0.DO,1.DO,O.DO/ 
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DATA ((Q(R,C),C=1,4),R=1,4)/2.D0,2.D0,-2.D0,-2.D0, 

#2.DO,2.DO,-2.DO,-2.DO, 

#-2.DO,-2.DO,2.DO,2.DO, 

#-2.00,-2.00,2.00,2.00/ 
DATA ((H(R,C),C=1,5),R=1,4)/0.D0,0.D0,-4.D0,0.D0,0.D0, 

#0.DO,0.D0,-4.DO,0.D0,0.D0, 

#0.DO,0.DO,4.DO,0.DO,0.DO, 

#0.DO,O.DO,4.DO,O.DO,O.DO/ 

DATA ((Nmess(R,C),C=l,l),R=l,l)/l.DO/ 

C x' 
F(l) = A(1,1)*Z(1)+A(1,2)*Z(2)+A(1,3)*Z(3)+A(1,4)*Z(4)+B(1,1)*Z(1 

#5)+M(l,l)*Z(10)+M(l,2)*Z(ll)+M(l,3)*Z(12)+M(l,4)*Z(13)+M(l,5)*Z(14 

#) 
F(2) = A(2,1)*Z(1)+A(2,2)*Z(2)+A(2,3)*Z(3)+A(2,4)*Z(4)+B(2,1)*Z(1 

#5)+M(2,l)*Z(10)+M(2,2)*Z(ll)+M(2,3)*Z(12)+M(2,4)*Z(13)+M(2,5)*Z(14 

#) 
F(3) = A(3,1)*Z(1)+A(3,2)*Z(2)+A(3,3)*Z(3)+A(3,4)*Z(4)+B(3,1)*Z(1 
#5)+M(3,l)*Z(10)+M(3,2)*Z(ll)+M(3,3)*Z(12)+M(3,4)*Z(13)+M(3,5)*Z(14 

#) 
F(4) = A(4,1)*Z(1)+A(4,2)*Z(2)+A(4,3)*Z(3)+A(4,4)*Z(4)+B(4,1)*Z(1 

#5)+M(4,l)*Z(10)+M(4,2)*Z(ll)+M(4,3)*Z(12)+M(4,4)*Z(13)+M(4,5)*Z(14 

#) 

C lambda' 
F(5) = -P(l)*q(l,l)*Z(l)-P(l)*Q(l,2)*Z(2)-P(l)*q(l,3)*Z(3)-P(l)*q 
#(l,4)*Z(4)-P(l)*H(l,l)*Z(10)/2-P(l)*H(l,2)*Z(ll)/2-P(l)*H(l,3)*Z(l 

#2)/2-P(l)*H(i,4)*Z(13)/2-P(l)*H(l,5)*Z(14)/2-A(l,l)*Z(5)-A(2,l)*Z( 

#6)-A(3,l)*Z(7)-A(4,l)*Z(8) 
F(6) = -P(1)*Q(2,1)*Z(1)-P(1)*Q(2,2)*Z(2)-P(1)*Q(2,3)*Z(3)-P(1)*Q 
#(2,4)*Z(4)-P(l)*H(2,l)*Z(10)/2-P(l)*H(2,2)*Z(ll)/2-P(l)*H(2,3)*Z(l 

#2)/2-P(l)*H(2,4)*Z(13)/2-P(l)*H(2,5)*Z(14)/2-A(l,2)*Z(5)-A(2,2)*Z( 

#6)-A(3,2)*Z(7)-A(4,2)*Z(8) 
F(7) = -P(l)*q(3,l)*Z(l)-P(l)*Q(3,2)*Z(2)-P(l)*Q(3,3)*Z(3)-P(l)*Q 
#(3,4)*Z(4)-P(l)*H(3,l)*Z(10)/2-P(l)*H(3,2)*Z(ll)/2-P(l)*H(3,3)*Z(l 

#2)/2-P(l)*H(3,4)*Z(13)/2-P(l)*H(3,5)*Z(14)/2-A(l,3)*Z(5)-A(2,3)*Z( 

#6)-A(3,3)*Z(7)-A(4,3)*Z(8) 
F(8) = -P(l)*q(4,l)*Z(l)-P(l)*Q(4,2)*Z(2)-P(l)*Q(4,3)*Z(3)-P(l)*q 
#(4,4)*Z(4)-P(l)*H(4,i)*Z(10)/2-P(l)*H(4,2)*Z(il)/2-P(l)*H(4,3)*Z(l 
#2)/2-P(l)*H(4,4)*Z(13)/2-P(l)*H(4,5)*Z(14)/2-A(l,4)*Z(5)-A(2,4)*Z( 

#6)-A(3,4)*Z(7)-A(4,4)*Z(8) 
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C Z> 
S2 = (P(1)*Q(1,1)*Z(1)+Z(2)*P(1)*Q(2,1)+Z(3)*P(1)*Q(3,1)+Z(4)*P(1) 

#*q(4,l))*Z(l)/2+(Z(l)*P(l)*Q(l,2)+P(l)*Q(2,2)*Z(2)+Z(3)*P(l)*Q(3,2 
#)+Z(4)*P(l)*Q(4,2))*Z(2)/2+(Z(l)*P(l)*Q(l,3)+Z(2)*P(l)*Q(2)3)+P(l) 

#*Q(3,3)*Z(3)+Z(4)*P(l)*Q(4,3))*Z(3)/2 
Sl = s2+(Z(l)*P(i)*Q(l,4)+Z(2)*P(l)*Q(2,4)+Z(3)*P(l)*Q(3,4)+P(l)*Q 

#(4,4)*Z(4))*Z(4)/2+(Z(l)*P(l)*H(i,l)+Z(2)*P(l)*H(2,l)+Z(3)*P(l)*H( 
#3,l)+Z(4)*P(l)*H(4,l))*Z(i0)/2+(Z(l)*P(l)*H(l,2)+Z(2)*P(l)*H(2>2)+ 
#Z(3)*P(l)*H(3,2)+Z(4)*P(l)*H(4,2))*Z(ll)/2+(Z(l)*P(l)*H(l,3)+Z(2)* 
#P(l)*H(2,3)+Z(3)*P(l)*H(3,3)+Z(4)*P(l)*H(4,3))*Z(12)/2 
F(9)=sl+(Z(l)*P(l)*H(l,4)+Z(2)*P(l)*H(2,4)+Z(3)*P(l)*H(3,4)+Z(4)*P 

#(l)*H(4,4))*Z(13)/2+(Z(l)*P(l)*H(i,5)+Z(2)*P(l)*H(2,5)+Z(3)*P(l)*H 
#(3)5)+Z(4)*P(l)*H(4,5))*Z(14)/2+Z(10)**2*P(l)+Z(ll)**2*P(l)+Z(12)* 

#*2*(2-2*P(l)+2*P(l)*Nmess(l,l))/2 +Z(13)**2*(2-2*P(l))/2+Z(14)**2* 

#(2-2*P(l))/2 

C Five algebraic constraints 

F(10) = 2*Z(10)*P(l)+Z(l)*P(l)*H(l,l)/2+Z(2)*P(l)*H(2,l)/2+Z(3)*P( 

#l)*H(3,l)/2+Z(4)*P(l)*H(4,l)/2+M(l,i)*Z(5)+M(2,l)*Z(6)+M(3)l)*Z(7) 

#+M(4,l)*Z(8) 
F(ll) = 2*Z(ll)*P(l)+Z(l)*P(l)*H(l,2)/2+Z(2)*P(l)*H(2,2)/2+Z(3)*P( 
#l)*H(3)2)/2+Z(4)*P(l)*H(4)2)/2+M(l)2)*Z(5)+M(2,2)*Z(6)+M(3,2)*Z(7) 

#+M(4,2)*Z(8) 

F(12) = Z(12)*(2-2*P(i)+2*P(l)*Nmess(l,l)) +Z(l)*P(l)*H(l,3)/2+Z(2 
#)*P(l)*H(2,3)/2+Z(3)*P(l)*H(3)3)/2+Z(4)*P(l)*H(4)3)/2+M(l,3)*Z(5)+ 

#M(2,3)*Z(6)+M(3)3)*Z(7)+M(4,3)*Z(8) 

F(13) = Z(13)*(2-2*P(l))+Z(l)*P(l)*H(l,4)/2+Z(2)*P(l)*H(2,4)/2+Z(3 

#)*P(l)*H(3,4)/2+Z(4)*P(l)*H(4)4)/2+M(l)4)*Z(5)+M(2,4)*Z(6)+M(3>4)* 

#Z(7)+M(4,4)*Z(8) 

F(14) = Z(14)*(2-2*P(l))+Z(i)*P(l)*H(l,5)/2+Z(2)*P(l)*H(2,5)/2+Z(3 

#)*P(l)*H(3,5)/2+Z(4)*P(l)*H(4,5)/2+M(l,5)*Z(5)+M(2,5)*Z(6)+M(3,5)* 

#Z(7)+M(4,5)*Z(8) 

C Objective function is a quadrature 

F(15) = Z(15)**2 

RETURN 

END 

C MI phase driver 
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SUBROUTINE MID2IN(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV, 
+ NGRID,INIT,MAXMIN,MXPARM,PO,PLB,PUB,PLBL, 

+ MXSTAT,YO,Yl,YLB,YUB,STSKL,STLBL,MXPCON,CLB, 

+ CUB, CLBL,MXTERM,COEF,ITERM,TITLE,IER) 

INTEGER IPHASE,NPHS.METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID, 

+      INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM), 

+      IER 

DOUBLE PRECISION PO(MXPARM).PLB(MXPARM),PUB(MXPARM),YO(0:MXSTAT), 
+        Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT))YUB(-1:1,0:MXSTAT), 

+        STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON), 

+        COEF(MXTERM) 

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80, 
+        CLBL(0:MXPCON)*80,TITLE(3)*60 

DOUBLE PRECISION TO.TF 

PARAMETER (T0=0.D0,TF=1.DO) 

METHOD = 3 

NSTG = 1 
NCF(l) = 6 

NCF(2) = 2 

NCF(3) = 1 

NPF(2) = 0 

NAV = 8 

NPV = 0 

NGRID =11 

INIT = 1 

MAXMIN = -1 

C Initial and final time 

Y0(0) = TO 

Y1(0) = TF 

C Initial guesses 

DO 10 I = 1,13 

YO(I) = l.DO 

10  CONTINUE 
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Y0(14)=0.D0 

DO 20 I = 1,13 

Y1(I) = 0.D0 

20  CONTINUE 

Y1(14)=1.D0 

C Boundary conditions 

DO 30 I = 5,6 

YLB(-l.I) = 0.D0 

YUB(-l.I) = 0.D0 

30  CONTINUE 

DO 40 I = 5,6 

YUB(1,I) = l.DO 

40  CONTINUE 

C Fix the start and finish time 

YLB(-1,0) = Y0(0) 

YUB(-1,0) = Y0(0) 

YLB(1,0) = Y1(0) 

YUB(1,0) = Y1(0) 

C Equality constraints 

ITERM(1,1) = 1 

ITERM(2,1) = 1 

ITERM(3,1) = 0 

ITERM(4,1) = -1 

CLB(l) = O.DO 

CUB(l) = O.DO 

ITERM(1,2) = 2 

ITERM(2,2) = 1 

ITERM(3,2) = 0 

ITERM(4,2) = -2 

CLB(2) = O.DO 

CUB(2) = O.DO 

C Objective function 
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ITERM(1,3) = 0 
ITERM(2,3) =  1 
ITERM(3,3) = 0 
ITERM(4,3) = -3 

RETURN 
END 

C MI constraint definition 

SUBROUTINE MID2DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR) 

INTEGER IPHASE.NZ.NP.NF.IFERR 
DOUBLE PRECISION T,Z(NZ),P(NP),F(NF),VH,VHAT,EPSIL 

DOUBLE PRECISION A0(2,2),A1(2,2),B0(2),B1(2),C0(2),C1(2) 

DOUBLE PRECISION M0(2,3),M1(2,3),N0(3),N1(3) 

C Six ODE constraints 

C Variable list: x:Z(l)-Z(4), q:Z(5)-Z(6), nu:Z(7)-Z(12), y:Z(13)-Z(14) 

PARAMETER (EPSIL=0.7D0) 

INTEGER R,C 

C Problem parameters 

DATA ((A0(R,C),C=i,2),R=l,2)/-l.D0,l.D0,-l.D0,-3.D0/ 

DATA ((Al(R,C),C=l,2),R=l,2)/-10.D0,l.D0,-i.D0,-3.D0/ 
DATA B0/1.D0,0.D0/,B1/1.D0,0.D0/,C0/1.D0,1.D0/,C1/1.D0,1.D0/ 

DATA ((M0(R,C),C=1,3),R=1,2)/0.D0,0.D0,1.D0,0.D0,1.D0,0.D0/ 

DATA NO/1.DO,0.DO,0.DO/ 
DATA ((Ml(R,C),C=l,3),R=i,2)/0.D0,0.D0,l.D0,0.D0,l.D0,0.D0/ 

DATA Nl/l.DO,O.DO,O.DO/ 

C First compute VH 

VH = VHAT(T) 

C x' 
F(l) = A0(1)1)*Z(1)+A0(1,2)*Z(2)+B0(1)*VH+EPSIL*(M0(1,1)*Z(7) 

#+M0(i,2)*Z(8)+M0(i,3)*Z(9)) 



Appendix A.  Software Drivers 161 

F(2)  = A0(2,1)*Z(1)+A0(2,2)*Z(2)+B0(2)*VH+EPSIL*(M0(2,1)*Z(7) 

#+M0(2,2)*Z(8)+M0(2,3)*Z(9)) 
F(3)   = Ai(i,l)*Z(3)+Al(l,2)*Z(4)+Bl(l)*VH+EPSIL*(Ml(i,l)*Z(10) 

#+Ml(l,2)*Z(ll)+Ml(l,3)*Z(12)) 
F(4)   = A1(2)1)*Z(3)+A1(2)2)*Z(4)+B1(2)*VH+EPSIL*(M1(2,1)*Z(10) 

#+Ml(2,2)*Z(ll)+Ml(2,3)*Z(12)) 

C q' 
F(5)  = Z(7)**2+ Z(8)**2+ Z(9)**2 
F(6)  = Z(10)**2+Z(ll)**2+Z(12)**2 

C Two algebraic constraints 
F(7) = C0(1)*Z(1)+C0(2)*Z(2)+EPSIL*(N0(1)*Z(7)+N0(2)*Z(8) 

#+N0(3)*Z(9))-Z(13) 

F(8) = C1(1)*Z(3)+C1(2)*Z(4)+EPSIL*(N1(1)*Z(10)+N1(2)*Z(11) 

#+Nl(3)*Z(12))-Z(14) 

C Obj function is a quadrature 

F(9) = (Z(13)-Z(14))**2 

RETURN 

END 

C Function to extract MEDS solution VHAT for MI phase 

DOUBLE PRECISION FUNCTION VHAT(T) 

INTEGER MAXPHS,NW,MAXCS,MAXDP,IPHASE,IER 

PARAMETER (MAXDP = 1000,MAXPHS = 5,NW = 10000000,MAXCS=100000) 

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1) 

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW) 

INTEGER NUMZV,LNZVEC,NUMPV,LNPVEC 

PARAMETER(LNZVEC = 50,LNPVEC = 10) 

DOUBLE PRECISION ZVEC(LNZVEC),PVEC(LNPVEC) 

DOUBLE PRECISION T.TZERO.TFINAL 

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2 

IPHASE = 1 

CALL OCSEVL(MAXPHS,CSTAT2,MAXCS,IPCPH2,DPARM2,MAXDP,IPDPH2, 
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+    W2,NW,IPHASE,T,TZERO,TFINAL,ZVEC,NUMZV,LNZVEC, 

+    PVEC,NUMPV,LNPVEC,IER) 

VHAT = ZVEC(15) 

RETURN 

END 

C Function to extract MEDS solution YBAR for MI phase 

DOUBLE PRECISION FUNCTION YBAR(T) 

INTEGER MAXPHS,NW,MAXCS,MAXDP,IPHASE,IER 

PARAMETER (MAXDP = 1000.MAXPHS = 5,NW = 10000000,MAXCS=100000) 

INTEGER IPCPH2(MAXPHS+1),IPDPH2(MAXPHS+1) 

DOUBLE PRECISION CSTAT2(MAXCS),DPARM2(MAXDP),W2(NW) 

INTEGER NUMZV,LNZVEC,NUMPV,LNPVEC 

PARAMETER(LNZVEC = 50,LNPVEC = 10) 

DOUBLE PRECISION ZVEC(LNZVEC),PVEC(LNPVEC) 

DOUBLE PRECISION T,TZERO,TFINAL 

DOUBLE PRECISION C1(2),NB1 

COMMON CSTAT2,IPCPH2,DPARM2,IPDPH2,W2 

PARAMETER (NB1=1.D0) 

DATA Cl/l.DO.l.DO/ 

IPHASE = 1 

CALL OCSEVL(MAXPHS,CSTAT2,MAXCS,IPCPH2,DPARM2,MAXDP,IPDPH2, 

+    W2,NW,IPHASE,T,TZERO,TFINAL,ZVEC,NUMZV,LNZVEC, 

+    PVEC,NUMPV,LNPVEC,IER) 

YBAR = C1(1)*ZVEC(3) + C1(2)*ZVEC(4) + NB1*ZVEC(12) 

RETURN 

END 
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A.4    Analysis and Presentation of Results 

The above SOCS driver creates several data files as outputs. These files are suitable 

for processing in MATLAB. The following MATLAB m-files process the data files 

outputted by SOCS to facilitate analysis and visualization of results. 

A.4.1    Detection Signal Phase Processing 

This m-file reads and plots the minimum energy detection signal and the separability 

index. 

'/.portion of exl_lto4.m 
7.exl_2_*.dat 
fid = fopen('exl_2_l.dat','r'); 
[A21,cnt]  = fscanf(fid,'7.22g',[ll,208]); 
fclose(fid); 

fid = fopen('exl_2_10.dat\'r>); 
[A210,cnt]  = fscanf (fid,''/.22g',[11,394]); 
fclose(fid); 

fid = fopenCexl_2_20.dat','r'); 
[A220,cnt]  = fscanf (fid,'7.22g', [11,642]); 
fclose(fid); 

fid = fopenOexl_2_100.dat', 'r'); 
[A2100,cnt]  = fscanf(fid,'7.22g',[ll,800]); 
fclose(fid); 

'/.gamma. dat 
fid = fopenCgamma.dat' , 'r'); 
[G.cnt]  = fscanf(fid,'7.22g',[3,20]); 
fclose(fid); 

7.extract vhat 
vl=A21(ll,:);vlO=A210(ll,:);v20=A220(ll,:);vl00=A2100(ll,:); 

7.need to rescale the vhats 

7.divide by the sqrt of the objective function 
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y,T=100 case gave negative vhat,  so resign it 
vl=vl/sqrt(A21(7,104)); 
vlO=vlO/sqrt(A210(7,197)); 
v20=v20/sqrt(A220(7,321)); 
vl00=-vl00/sqrt(A2100(7,400)); 

"/.extract time vector 
tl=A21(l,:);   tl0=A210(l,:);  t20=A220(l,:);  tl00=A2100(l,:); 

7,plot vhats 
plot(tl,vl) 
plot(tl0,vl0) 
plot(t20,v20) 
plot(tl00,vl00) 
"/„thesis plots exl21v.eps,  exl210v.eps,  exl220v.eps,  exl2100v.eps 

"/„combined plot of   [0,20],   [0,100]   cases 
plot(t20,v20,tl00,vl00) 
"/.thesis plot exl2v20vl00.eps 

"/„plot gamma 

T=G(1,:);gamma=sqrt(G(2,:)); 

plot(T,gamma) 

"/„thesis plot exlgammultT.eps 

y.rescale the vhats and the time vectors for combined plot of all cases 

vl=vl/max(vl); 
vl0=vl0/max(vl0);tl0=tl0/max(tl0); 

v20=v20/max(v20);t20=t20/max(t20); 

Vl00=vl00/max(vl00);tl00=tl00/max(tl00); 

plot(tl,vl,tl0,vl0,t20,v20,tl00,vl00) 

"/„thesis plot exl2multv.eps 

"/.end of routine 

A.4.2    Model Identification Phase Processing 

This m-file reads and plots the normal to the separating hyperplane and ybar. 

°/,adex7_2m.m 
fid = fopen('adex7_2_lm7.dat,,,r'); 
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[Aa71m7,cnt]   = fscanf (fid, "/,22g', [15,250] ); 
fclose(fid); 

'/.extract y0 and yl 

yl7=Aa71m7(15,:); y07=Aa71m7(14,:); 

'/.compute yb7 as the midpoint of segment {(ybl+yb0)/2> 

yb7= (yl7+ y07)/2; 

'/.extract time vector 

te= Aa71m7(l,:); 

'/.construct normal to hyperplane 

a7= (yl7- y07)/ L2norm(yl7-y07,te); 

'/.plot ybar 

plot(te,yb7) 

'/.thesis plot ae721yb7.eps 

'/.plot a(t) 

plot(te,a7) 

'/.thesis plot ae721a7.eps 

7,L2norm.m function to compute L2 norm 

function x = L2norm(f,t) 

'/.find the L2 norm of a discretized function on [0,tf] 

'/.uses right approximation (as opposed to left/center) 

'/.input vector function f 
'/.input time vector t corresponding to' values of f 

N = length(f); 

if N~=length(t) 

error('vectors must be same length') 

end 

tr=t(2:N); 

tl=t(l:N-l); 

dt=tr-tl; 

fsq=f(l:N-l).~2; 

x=sqrt(fsq*dt') ; 

'/.end of routine 


